Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 12 results ...

Baborska-Narożny, M, Stevenson, F and Grudzińska, M (2017) Overheating in retrofitted flats: Occupant practices, learning and interventions. Building Research & Information, 45(01), 40-59.

Birchmore, R, Davies, K, Etherington, P, Tait, R and Pivac, A (2017) Overheating in Auckland homes: Testing and interventions in full-scale and simulated houses. Building Research & Information, 45(01), 157-75.

Gupta, R, Barnfield, L and Gregg, M (2017) Overheating in care settings: Magnitude, causes, preparedness and remedies. Building Research & Information, 45(01), 83-101.

Lee, W V and Steemers, K (2017) Exposure duration in overheating assessments: A retrofit modelling study. Building Research & Information, 45(01), 60-82.

Mavrogianni, A, Pathan, A, Oikonomou, E, Biddulph, P, Symonds, P and Davies, M (2017) Inhabitant actions and summer overheating risk in London dwellings. Building Research & Information, 45(01), 119-42.

McGill, G, Sharpe, T, Robertson, L, Gupta, R and Mawditt, I (2017) Meta-analysis of indoor temperatures in new-build housing. Building Research & Information, 45(01), 19-39.

Meinke, A, Hawighorst, M, Wagner, A, Trojan, J and Schweiker, M (2017) Comfort-related feedforward information: Occupants' choice of cooling strategy and perceived comfort. Building Research & Information, 45(01), 222-38.

Morgan, C, Foster, J A, Poston, A and Sharpe, T R (2017) Overheating in Scotland: Contributing factors in occupied homes. Building Research & Information, 45(01), 143-56.

Symonds, P, Taylor, J, Mavrogianni, A, Davies, M, Shrubsole, C, Hamilton, I and Chalabi, Z (2017) Overheating in English dwellings: Comparing modelled and monitored large-scale datasets. Building Research & Information, 45(01), 195-208.

Thomas, L E (2017) Combating overheating: Mixed-mode conditioning for workplace comfort. Building Research & Information, 45(01), 176-94.

Vellei, M, Ramallo-González, A P, Coley, D, Lee, J, Gabe-Thomas, E, Lovett, T and Natarajan, S (2017) Overheating in vulnerable and non-vulnerable households. Building Research & Information, 45(01), 102-18.

Zhang, Z, Zhang, Y and Jin, L (2017) Thermal comfort of rural residents in a hot-humid area. Building Research & Information, 45(01), 209-21.

  • Type: Journal Article
  • Keywords: local adaptation; natural ventilation; adaptive capacity; overheating; human factors; China; physiology; thermal comfort; hot-humid area; urban; environment; construction & building technology; adaptation; people; history; climate; ventilation; heat;
  • ISBN/ISSN: 0961-3218
  • URL: https://doi.org/10.1080/09613218.2017.1246003
  • Abstract:
    The thermal comfort of rural residents in China is studied to improve their living conditions and safeguard agricultural development. The present study recruited 30 healthy young people (50% male and 50% female) from rural areas of the hot and humid region of China and exposed them to a wide range of temperatures (20-32 degrees C) and humidities (50% and 70%) in a climate chamber. Both the psychological and physiological responses were observed. The thermal neutral standard effective temperature (SET) was determined to be 26.8 degrees C and the 90% thermal acceptable SET range was 22.9-30.7 degrees C. Mean skin temperature and skin wetness were found to be good predictors for thermal comfort in the neutral-cool and neutral-warm conditions, respectively. When compared with the previous results from similar studies of urban participants living in naturally ventilated buildings, a significant divergence is found. Rural participants reported the same thermal sensation but felt more comfortable and acceptable under identical cool or warm conditions. Rural participants had the same neutral temperature, but a much wider acceptable temperature range. The reason for these differences between rural and urban people may be attributed to differences in local culture, expectations and environmental cognition.;The thermal comfort of rural residents in China is studied to improve their living conditions and safeguard agricultural development. The present study recruited 30 healthy young people (50% male and 50% female) from rural areas of the hot and humid region of China and exposed them to a wide range of temperatures (20-32°C) and humidities (50% and 70%) in a climate chamber. Both the psychological and physiological responses were observed. The thermal neutral standard effective temperature (SET) was determined to be 26.8°C and the 90% thermal acceptable SET range was 22.9-30.7°C. Mean skin temperature and skin wetness were found to be good predictors for thermal comfort in the neutral-cool and neutral-warm conditions, respectively. When compared with the previous results from similar studies of urban participants living in naturally ventilated buildings, a significant divergence is found. Rural participants reported the same thermal sensation but felt more comfortable and acceptable under identical cool or warm conditions. Rural participants had the same neutral temperature, but a much wider acceptable temperature range. The reason for these differences between rural and urban people may be attributed to differences in local culture, expectations and environmental cognition.;  The thermal comfort of rural residents in China is studied to improve their living conditions and safeguard agricultural development. The present study recruited 30 healthy young people (50% male and 50% female) from rural areas of the hot and humid region of China and exposed them to a wide range of temperatures (20-32°C) and humidities (50% and 70%) in a climate chamber. Both the psychological and physiological responses were observed. The thermal neutral standard effective temperature (SET) was determined to be 26.8°C and the 90% thermal acceptable SET range was 22.9-30.7°C. Mean skin temperature and skin wetness were found to be good predictors for thermal comfort in the neutral-cool and neutral-warm conditions, respectively. When compared with the previous results from similar studies of urban participants living in naturally ventilated buildings, a significant divergence is found. Rural participants reported the same thermal sensation but felt more comfortable and acceptable under identical cool or warm conditions. Rural participants had the same neutral temperature, but a much wider acceptable temperature range. The reason for these differences between rural and urban people may be attributed to differences in local culture, expectations and environmental cognition.;