Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 12 results ...

Baborska-Narożny, M, Stevenson, F and Grudzińska, M (2017) Overheating in retrofitted flats: Occupant practices, learning and interventions. Building Research & Information, 45(01), 40-59.

Birchmore, R, Davies, K, Etherington, P, Tait, R and Pivac, A (2017) Overheating in Auckland homes: Testing and interventions in full-scale and simulated houses. Building Research & Information, 45(01), 157-75.

  • Type: Journal Article
  • Keywords: New Zealand; thermal performance; prefabrication; building performance; overheating; simulation; houses; energy; performance; risk; impact; construction & building technology; buildings; heat
  • ISBN/ISSN: 0961-3218
  • URL: https://doi.org/10.1080/09613218.2017.1232857
  • Abstract:
    New Zealand dwellings have thermal conditions managed with relatively light regulation. No minimum airtightness standards exist and historical increases in required insulation levels aimed to reduce winter heating energy consumption. A consequence of this policy is an increased potential for overheating in summer. There has been a steady increase in the use of heat pumps, risking heating energy savings being outweighed by cooling energy increases. Internal temperatures and humidity were monitored in the living spaces of three unoccupied, transportable houses over all four seasons of the Auckland climate. The houses are located on the same site and are of identical construction, apart from selected interventions which were tested to explore their potential to mitigate overheating. Results indicate that overheating can be extreme and long lasting. High internal temperatures are very closely connected with solar gains. Internal temperatures reached 32°C in autumn. Roof space temperatures reached 51°C in summertime. Interventions resulted in modest improvements and an airtight construction provided a small thermal benefit. A thermal model for the houses was developed using EnergyPlus and compared with actual measurements and the interventions. Early results point to the further need to reduce solar gain, increase roof-space ventilation and increase mass, where feasible.;  New Zealand dwellings have thermal conditions managed with relatively light regulation. No minimum airtightness standards exist and historical increases in required insulation levels aimed to reduce winter heating energy consumption. A consequence of this policy is an increased potential for overheating in summer. There has been a steady increase in the use of heat pumps, risking heating energy savings being outweighed by cooling energy increases. Internal temperatures and humidity were monitored in the living spaces of three unoccupied, transportable houses over all four seasons of the Auckland climate. The houses are located on the same site and are of identical construction, apart from selected interventions which were tested to explore their potential to mitigate overheating. Results indicate that overheating can be extreme and long lasting. High internal temperatures are very closely connected with solar gains. Internal temperatures reached 32°C in autumn. Roof space temperatures reached 51°C in summertime. Interventions resulted in modest improvements and an airtight construction provided a small thermal benefit. A thermal model for the houses was developed using EnergyPlus and compared with actual measurements and the interventions. Early results point to the further need to reduce solar gain, increase roof-space ventilation and increase mass, where feasible.;New Zealand dwellings have thermal conditions managed with relatively light regulation. No minimum airtightness standards exist and historical increases in required insulation levels aimed to reduce winter heating energy consumption. A consequence of this policy is an increased potential for overheating in summer. There has been a steady increase in the use of heat pumps, risking heating energy savings being outweighed by cooling energy increases. Internal temperatures and humidity were monitored in the living spaces of three unoccupied, transportable houses over all four seasons of the Auckland climate. The houses are located on the same site and are of identical construction, apart from selected interventions which were tested to explore their potential to mitigate overheating. Results indicate that overheating can be extreme and long lasting. High internal temperatures are very closely connected with solar gains. Internal temperatures reached 32 degrees C in autumn. Roof space temperatures reached 51 degrees C in summertime. Interventions resulted in modest improvements and an airtight construction provided a small thermal benefit. A thermal model for the houses was developed using EnergyPlus and compared with actual measurements and the interventions. Early results point to the fu ther need to reduce solar gain, increase roof-space ventilation and increase mass, where feasible.;

Gupta, R, Barnfield, L and Gregg, M (2017) Overheating in care settings: Magnitude, causes, preparedness and remedies. Building Research & Information, 45(01), 83-101.

Lee, W V and Steemers, K (2017) Exposure duration in overheating assessments: A retrofit modelling study. Building Research & Information, 45(01), 60-82.

Mavrogianni, A, Pathan, A, Oikonomou, E, Biddulph, P, Symonds, P and Davies, M (2017) Inhabitant actions and summer overheating risk in London dwellings. Building Research & Information, 45(01), 119-42.

McGill, G, Sharpe, T, Robertson, L, Gupta, R and Mawditt, I (2017) Meta-analysis of indoor temperatures in new-build housing. Building Research & Information, 45(01), 19-39.

Meinke, A, Hawighorst, M, Wagner, A, Trojan, J and Schweiker, M (2017) Comfort-related feedforward information: Occupants' choice of cooling strategy and perceived comfort. Building Research & Information, 45(01), 222-38.

Morgan, C, Foster, J A, Poston, A and Sharpe, T R (2017) Overheating in Scotland: Contributing factors in occupied homes. Building Research & Information, 45(01), 143-56.

Symonds, P, Taylor, J, Mavrogianni, A, Davies, M, Shrubsole, C, Hamilton, I and Chalabi, Z (2017) Overheating in English dwellings: Comparing modelled and monitored large-scale datasets. Building Research & Information, 45(01), 195-208.

Thomas, L E (2017) Combating overheating: Mixed-mode conditioning for workplace comfort. Building Research & Information, 45(01), 176-94.

Vellei, M, Ramallo-González, A P, Coley, D, Lee, J, Gabe-Thomas, E, Lovett, T and Natarajan, S (2017) Overheating in vulnerable and non-vulnerable households. Building Research & Information, 45(01), 102-18.

Zhang, Z, Zhang, Y and Jin, L (2017) Thermal comfort of rural residents in a hot-humid area. Building Research & Information, 45(01), 209-21.