Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 12 results ...

Baborska-Narożny, M, Stevenson, F and Grudzińska, M (2017) Overheating in retrofitted flats: Occupant practices, learning and interventions. Building Research & Information, 45(01), 40-59.

Birchmore, R, Davies, K, Etherington, P, Tait, R and Pivac, A (2017) Overheating in Auckland homes: Testing and interventions in full-scale and simulated houses. Building Research & Information, 45(01), 157-75.

Gupta, R, Barnfield, L and Gregg, M (2017) Overheating in care settings: Magnitude, causes, preparedness and remedies. Building Research & Information, 45(01), 83-101.

Lee, W V and Steemers, K (2017) Exposure duration in overheating assessments: A retrofit modelling study. Building Research & Information, 45(01), 60-82.

Mavrogianni, A, Pathan, A, Oikonomou, E, Biddulph, P, Symonds, P and Davies, M (2017) Inhabitant actions and summer overheating risk in London dwellings. Building Research & Information, 45(01), 119-42.

McGill, G, Sharpe, T, Robertson, L, Gupta, R and Mawditt, I (2017) Meta-analysis of indoor temperatures in new-build housing. Building Research & Information, 45(01), 19-39.

Meinke, A, Hawighorst, M, Wagner, A, Trojan, J and Schweiker, M (2017) Comfort-related feedforward information: Occupants' choice of cooling strategy and perceived comfort. Building Research & Information, 45(01), 222-38.

Morgan, C, Foster, J A, Poston, A and Sharpe, T R (2017) Overheating in Scotland: Contributing factors in occupied homes. Building Research & Information, 45(01), 143-56.

Symonds, P, Taylor, J, Mavrogianni, A, Davies, M, Shrubsole, C, Hamilton, I and Chalabi, Z (2017) Overheating in English dwellings: Comparing modelled and monitored large-scale datasets. Building Research & Information, 45(01), 195-208.

Thomas, L E (2017) Combating overheating: Mixed-mode conditioning for workplace comfort. Building Research & Information, 45(01), 176-94.

Vellei, M, Ramallo-González, A P, Coley, D, Lee, J, Gabe-Thomas, E, Lovett, T and Natarajan, S (2017) Overheating in vulnerable and non-vulnerable households. Building Research & Information, 45(01), 102-18.

  • Type: Journal Article
  • Keywords: heat stress; adaptive model; indoor air quality; overheating; heatwaves; adaptive comfort; houses; vulnerability; thermal comfort; dwellings; indoor air-quality; urban; environment; climate-change; construction & building technology; temperatures; hea
  • ISBN/ISSN: 0961-3218
  • URL: https://doi.org/10.1080/09613218.2016.1222190
  • Abstract:
      As the 2003 European heatwave demonstrated, overheating in homes can cause wide-scale fatalities. With temperatures and heatwave frequency predicted to increase due to climate change, such events can be expected to become more common. Thus, investigating the risk of overheating in buildings is key to understanding the scale of the problem and in designing solutions. Most work on this topic has been theoretical and based on lightweight dwellings that might be expected to overheat. By contrast, this study collects temperature and air quality data over two years for vulnerable and non-vulnerable UK homes where overheating would not be expected to be common. Overheating was found to occur, particularly and disproportionately in households with vulnerable occupants. As the summers in question were not extreme and contained no prolonged heatwaves, this is a significant and worrying finding. The vulnerable homes were also found to have worse indoor air quality. This suggests that some of the problem might be solved by enhancing indoor ventilation. The collected thermal comfort survey data were also validated against the European adaptive model. Results suggest that the model underestimates discomfort in warm conditions, having implications for both vulnerable and non-vulnerable homes.;As the 2003 European heatwave demonstrated, overheating in homes can cause wide-scale fatalities. With temperatures and heatwave frequency predicted to increase due to climate change, such events can be expected to become more common. Thus, investigating the risk of overheating in buildings is key to understanding the scale of the problem and in designing solutions. Most work on this topic has been theoretical and based on lightweight dwellings that might be expected to overheat. By contrast, this study collects temperature and air quality data over two years for vulnerable and non-vulnerable UK homes where overheating would not be expected to be common. Overheating was found to occur, particularly and disproportionately in households with vulnerable occupants. As the summers in question were not extreme and contained no prolonged heatwaves, this is a significant and worrying finding. The vulnerable homes were also found to have worse indoor air quality. This suggests that some of the problem might be solved by enhancing indoor ventilation. The collected thermal comfort survey data were also validated against the European adaptive model. Results suggest that the model underestimates discomfort in warm conditions, having implications for both vulnerable and non-vulnerable homes.;As the 2003 European heatwave demonstrated, overheating in homes can cause wide-scale fatalities. With temperatures and heatwave frequency predicted to increase due to climate change, such events can be expected to become more common. Thus, investigating the risk of overheating in buildings is key to understanding the scale of the problem and in designing solutions. Most work on this topic has been theoretical and based on lightweight dwellings that might be expected to overheat. By contrast, this study collects temperature and air quality data over two years for vulnerable and non-vulnerable UK homes where overheating would not be expected to be common. Overheating was found to occur, particularly and disproportionately in households with vulnerable occupants. As the summers in question were not extreme and contained no prolonged heatwaves, this is a significant and worrying finding. The vulnerable homes were also found to have worse indoor air quality. This suggests that some of the problem might be solved by enhancing indoor ventilation. The collected thermal comfort survey data were also validated against the European adaptive model. Results suggest that the model underestimates discomfort in warm conditions, having implications for both vulnerable and non-vulnerable homes.;

Zhang, Z, Zhang, Y and Jin, L (2017) Thermal comfort of rural residents in a hot-humid area. Building Research & Information, 45(01), 209-21.