Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 12 results ...

Baborska-Narożny, M, Stevenson, F and Grudzińska, M (2017) Overheating in retrofitted flats: Occupant practices, learning and interventions. Building Research & Information, 45(01), 40-59.

Birchmore, R, Davies, K, Etherington, P, Tait, R and Pivac, A (2017) Overheating in Auckland homes: Testing and interventions in full-scale and simulated houses. Building Research & Information, 45(01), 157-75.

Gupta, R, Barnfield, L and Gregg, M (2017) Overheating in care settings: Magnitude, causes, preparedness and remedies. Building Research & Information, 45(01), 83-101.

Lee, W V and Steemers, K (2017) Exposure duration in overheating assessments: A retrofit modelling study. Building Research & Information, 45(01), 60-82.

Mavrogianni, A, Pathan, A, Oikonomou, E, Biddulph, P, Symonds, P and Davies, M (2017) Inhabitant actions and summer overheating risk in London dwellings. Building Research & Information, 45(01), 119-42.

  • Type: Journal Article
  • Keywords: occupant behaviour; questionnaire; monitoring; housing; overheating; simulation; uk housing stock; 21st-century; thermal comfort; climate-change; vulnerability; excess mortality; impact; construction & building technology; 2003 heat-wave; relative imp
  • ISBN/ISSN: 0961-3218
  • URL: https://doi.org/10.1080/09613218.2016.1208431
  • Abstract:
    An indoor overheating assessment study of 101 London dwellings during summer 2009 is presented. The study included building surveys, indoor dry bulb temperature monitoring and a questionnaire survey on occupant behaviour, including the operation of passive and active ventilation, cooling and shading systems. A theoretical London housing stock comprising 3456 combinations of building geometry, orientations, urban patterns, fabric retrofit and external weather was simulated using the EnergyPlus thermal modelling software. A statistical meta-model of EnergyPlus was then built by regressing the independent variables (simulation input) against the dependent variables (overheating risk). The monitoring and questionnaire data were analysed to explore the relationship between self-reported behaviour and overheating, and to test the meta-model. The monitoring data indicated that London homes and, in particular, bedrooms are already at risk of overheating during hot spells under the current climate. Around 70% of respondents tended to open only one or no windows at night mainly due to security reasons. An improvement in the coefficient of determination (R-2) values between measured temperature and meta-model predictions was obtained only for those dwellings where occupants reported actions that were in line with the modelling assumptions, thus highlighting the importance of occupant behaviour for overheating.;An indoor overheating assessment study of 101 London dwellings during summer 2009 is presented. The study included building surveys, indoor dry bulb temperature monitoring and a questionnaire survey on occupant behaviour, including the operation of passive and active ventilation, cooling and shading systems. A theoretical London housing stock comprising 3456 combinations of building geometry, orientations, urban patterns, fabric retrofit and external weather was simulated using the EnergyPlus thermal modelling software. A statistical meta-model of EnergyPlus was then built by regressing the independent variables (simulation input) against the dependent variables (overheating risk). The monitoring and questionnaire data were analysed to explore the relationship between self-reported behaviour and overheating, and to test the meta-model. The monitoring data indicated that London homes and, in particular, bedrooms are already at risk of overheating during hot spells under the current climate. Around 70% of respondents tended to open only one or no windows at night mainly due to security reasons. An improvement in the coefficient of determination (R 2 ) values between measured temperature and meta-model predictions was obtained only for those dwellings where occupants reported actions that were in line with the modelling assumptions, thus highlighting the importance of occupant behaviour for overheating.;  An indoor overheating assessment study of 101 London dwellings during summer 2009 is presented. The study included building surveys, indoor dry bulb temperature monitoring and a questionnaire survey on occupant behaviour, including the operation of passive and active ventilation, cooling and shading systems. A theoretical London housing stock comprising 3456 combinations of building geometry, orientations, urban patterns, fabric retrofit and external weather was simulated using the EnergyPlus thermal modelling software. A statistical meta-model of EnergyPlus was then built by regressing the independent variables (simulation input) against the dependent variables (overheating risk). The monitoring and questionnaire data were analysed to explore the relationship between self-reported behaviour and overheating, and to test the meta-model. The monitoring data indicated that London homes and, in particular, bedrooms are already at risk of overheating during hot spells under the current climate. Around 70% of respondents tended to open only one or no windows at night mainly due to security reasons. An improvement in the coefficient of determination (R2) values between measured temperature and meta-model predictions was obtaine only for those dwellings where occupants reported actions that were in line with the modelling assumptions, thus highlighting the importance of occupant behaviour for overheating.;

McGill, G, Sharpe, T, Robertson, L, Gupta, R and Mawditt, I (2017) Meta-analysis of indoor temperatures in new-build housing. Building Research & Information, 45(01), 19-39.

Meinke, A, Hawighorst, M, Wagner, A, Trojan, J and Schweiker, M (2017) Comfort-related feedforward information: Occupants' choice of cooling strategy and perceived comfort. Building Research & Information, 45(01), 222-38.

Morgan, C, Foster, J A, Poston, A and Sharpe, T R (2017) Overheating in Scotland: Contributing factors in occupied homes. Building Research & Information, 45(01), 143-56.

Symonds, P, Taylor, J, Mavrogianni, A, Davies, M, Shrubsole, C, Hamilton, I and Chalabi, Z (2017) Overheating in English dwellings: Comparing modelled and monitored large-scale datasets. Building Research & Information, 45(01), 195-208.

Thomas, L E (2017) Combating overheating: Mixed-mode conditioning for workplace comfort. Building Research & Information, 45(01), 176-94.

Vellei, M, Ramallo-González, A P, Coley, D, Lee, J, Gabe-Thomas, E, Lovett, T and Natarajan, S (2017) Overheating in vulnerable and non-vulnerable households. Building Research & Information, 45(01), 102-18.

Zhang, Z, Zhang, Y and Jin, L (2017) Thermal comfort of rural residents in a hot-humid area. Building Research & Information, 45(01), 209-21.