Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 16 results ...

Farnham, C, Zhang, L, Yuan, J, Emura, K, Alam, A M and Mizuno, T (2017) Measurement of the evaporative cooling effect: Oscillating misting fan. Building Research & Information, 45(07), 783-99.

Farnham, C, Zhang, L, Yuan, J, Emura, K, Alam, A M and Mizuno, T (2017) Measurement of the evaporative cooling effect: oscillating misting fan. Building Research & Information, 45(07), 783–99.

Kingma, B R M, Schweiker, M, Wagner, A and van Marken Lichtenbelt, W D (2017) Exploring internal body heat balance to understand thermal sensation. Building Research & Information, 45(07), 808-18.

Kingma, B, Schweiker, M, Wagner, A and van Marken Lichtenbelt, W D (2017) Exploring internal body heat balance to understand thermal sensation. Building Research & Information, 45(07), 808–18.

Nicol, F (2017) Temperature and adaptive comfort in heated, cooled and free-running dwellings. Building Research & Information, 45(07), 730-44.

Nicol, F (2017) Temperature and adaptive comfort in heated, cooled and free-running dwellings. Building Research & Information, 45(07), 730–44.

Pallubinsky, H, Kingma, B R M, Schellen, L, Dautzenberg, B, van Baak, M A and van Marken Lichtenbelt, W D (2017) The effect of warmth acclimation on behaviour, thermophysiology and perception. Building Research & Information, 45(07), 800-7.

Pallubinsky, H, Kingma, B R M, Schellen, L, Dautzenberg, B, van Baak, M A and van Marken Lichtenbelt, W D (2017) The effect of warmth acclimation on behaviour, thermophysiology and perception. Building Research & Information, 45(07), 800–7.

Rijal, H B, Humphreys, M A and Nicol, J F (2017) Towards an adaptive model for thermal comfort in Japanese offices. Building Research & Information, 45(07), 717-29.

Rijal, H B, Humphreys, M A and Nicol, J F (2017) Towards an adaptive model for thermal comfort in Japanese offices. Building Research & Information, 45(07), 717–29.

  • Type: Journal Article
  • Keywords: adaptation; adaptive model; comfort temperature; Griffiths method; indoor temperature; office buildings; thermal comfort; Japan;
  • ISBN/ISSN: 0961-3218
  • URL: https://doi.org/10.1080/09613218.2017.1288450
  • Abstract:
    This study investigates the seasonal adaptation to temperature that occurs in Japanese offices, with a view to suggesting an adaptive model for them. Temperatures were measured in 11 office buildings and thermal comfort transverse surveys of occupants were conducted for over a year in the Tokyo and Yokohama areas of Japan. A total of 4660 samples were collected from about 1350 people. The occupants were found to be highly satisfied with the thermal environment in their offices. Even though the Japanese government recommends the indoor temperature setting of 28°C for cooling and 20°C for heating, the comfort globe temperature was found to be 2.6°C lower in cooling mode and 4.3°C higher in heating mode, in line with actual indoor temperatures. The monthly and seasonal variation in the comfort temperature was found to be significantly lower than those in dwellings. The comfort temperature is related primarily to the indoor temperature, but an adaptive relationship can be derived to estimate the indoor comfort temperature from the prevailing outdoor temperature for similar office buildings.

Schweiker, M and Wagner, A (2017) Influences on the predictive performance of thermal sensation indices. Building Research & Information, 45(07), 745-58.

Schweiker, M and Wagner, A (2017) Influences on the predictive performance of thermal sensation indices. Building Research & Information, 45(07), 745–58.

van Marken Lichtenbelt, W, Hanssen, M, Pallubinsky, H, Kingma, B and Schellen, L (2017) Healthy excursions outside the thermal comfort zone. Building Research & Information, 45(07), 819-27.

van Marken Lichtenbelt, W, Hanssen, M, Pallubinsky, H, Kingma, B and Schellen, L (2017) Healthy excursions outside the thermal comfort zone. Building Research & Information, 45(07), 819–27.

Vargas, G, Lawrence, R and Stevenson, F (2017) The role of lobbies: Short-term thermal transitions. Building Research & Information, 45(07), 759-82.

Vargas, G, Lawrence, R and Stevenson, F (2017) The role of lobbies: short-term thermal transitions. Building Research & Information, 45(07), 759–82.