Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 11 results ...

Badi, S, Ochieng, E, Nasaj, M and Papadaki, M (2021) Technological, organisational and environmental determinants of smart contracts adoption: UK construction sector viewpoint. Construction Management and Economics, 39(01), 36–54.

Bordalo, R, de Brito, J, Gaspar, P L and Silva, A (2011) Service life prediction modelling of adhesive ceramic tiling systems. Building Research & Information, 39(01), 66–78.

Chahrour, R, Hafeez, M A, Ahmad, A M, Sulieman, H I, Dawood, H, Rodriguez-Trejo, S, Kassem, M, Naji, K K and Dawood, N (2021) Cost-benefit analysis of BIM-enabled design clash detection and resolution. Construction Management and Economics, 39(01), 55–72.

Lehtovaara, J, Seppänen, O, Peltokorpi, A, Kujansuu, P and Grönvall, M (2021) How takt production contributes to construction production flow: a theoretical model. Construction Management and Economics, 39(01), 73–95.

Lindblad, H and Karrbom Gustavsson, T (2021) Public clients ability to drive industry change: the case of implementing BIM. Construction Management and Economics, 39(01), 21–35.

Lucke, T and Arthur, S (2011) Plastic pipe pressures in siphonic roof drainage systems. Building Research & Information, 39(01), 79–92.

  • Type: Journal Article
  • Keywords: critical buckling pressure; negative pressure; siphonic roof drainage
  • ISBN/ISSN: 0961-3218
  • URL: https://doi.org/10.1080/09613218.2010.527684
  • Abstract:
    Siphonic roof drainage is a highly efficient type of drainage system that is particularly suitable for large buildings and other structures over approximately 4 m in height. Although siphonic roof drainage systems are enjoying ever-increasing popularity with architects, there is still some uncertainty regarding the minimum pipe pressure class required for siphonic pipework, especially in tall buildings. This is particularly the case in warmer countries since higher temperatures can drastically decrease the strength of the pipework material used in siphonic systems – typically unplasticized polyvinylchloride (PVC-U) and high-density polyethylene (HDPE). However, there is very limited information available on how plastic pipes behave under the sub-atmospheric pressures that occur under operating conditions in siphonic systems. This paper describes experiments conducted to investigate sub-atmospheric pressures in siphonic systems and how they may be controlled by injecting air into vertical downpipes. Recommendations for minimum pipework pressure classes are provided together with methods for limiting the minimum pressures without significantly decreasing the system capacity. This paper will help engineers design siphonic systems with more confidence so that such systems will continue to perform adequately over their intended design life.

Newton, P W and Tucker, S N (2011) Pathways to decarbonizing the housing sector: a scenario analysis. Building Research & Information, 39(01), 34–50.

Sandberg, N H, Bergsdal, H and Brattebø, H (2011) Historical energy analysis of the Norwegian dwelling stock. Building Research & Information, 39(01), 1–15.

Sodagar, B, Rai, D, Jones, B, Wihan, J and Fieldson, R (2011) The carbon-reduction potential of straw-bale housing. Building Research & Information, 39(01), 51–65.

Wallhagen, M and Glaumann, M (2011) Design consequences of differences in building assessment tools: a case study. Building Research & Information, 39(01), 16–33.

Zomer, T, Neely, A, Sacks, R and Parlikad, A (2021) Exploring the influence of socio-historical constructs on BIM implementation: an activity theory perspective. Construction Management and Economics, 39(01), 1–20.