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The international research community have proposed many accurate models for 
estimating the productivity of construction processes. Few of these models permit 
practical implementation at the early stages of a construction project, and therefore 
are of limited use to construction practitioners. For example, contractors require 
accurate estimates of productivity in the early stages of a project, to avoid being 
lumbered with an inadequate quantity of plant at the construction stage. This paper 
considers the earthmoving process, and examines the effect of inadequate resources 
on productivity. The causes of under-resourced operations are discussed and a 
dynamic modelling framework is proposed as a method to prevent this phenomenon. 
Dynamic modelling can be applied to any modelling method and constitutes: 
separating the operation into planning stages; choosing the variables which are known 
and significant at each stage; building a model based on those variables. The 
framework is applied and validated for a linear regression model of earthmoving 
productivity, providing acceptable results. The accuracy of the results from the model 
could be improved by the adoption of the principles of concurrent engineering. 
Finally, the implementation of dynamic modelling in simulation, case-based 
reasoning and neural networks is discussed.     
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INTRODUCTION 
There have been numerous modelling methods, such as simulation, neural networks, 
regression analysis and case-based reasoning, proposed to estimate the productivity of 
construction processes. The productivity is normally a measure of the amount of work 
completed per hour, and can be used to estimate the amount of time and financial cost 
required to complete an individual operation of a construction process. The time and 
cost estimates for each operation, of every construction process are required to make a 
plan of a complete project, and therefore these estimates must be accurate. In the past 
there have been many simulation productivity models, such as: CYCLONE (Halpin, 
1977), UMCYCLONE (Ioannou, 1989), STROBOSCOPE (Martinez and Ioannou, 
1994) and TruckSim (Smith, 1995; Smith et. al, 1995). More recently the tendency 
has been to use the artificial intelligence modelling techniques neural networks (Chao 
and Skibniewski, 1994; Portas and Abourizk, 1997; Sonmez and Rowings, 1998) and 
case-based reasoning (Graham and Smith, 2003; Graham et. al, 2004; Graham and 
Smith, 2004) to estimate construction productivity.  

Although, all of the above models have been proven capable of providing accurate 
estimates of productivity, there have been many associated usage difficulties, 
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preventing the widespread application of the models in the construction industry. One 
of the main difficulties lies in the need to provide a supplier (of plant and materials) 
with an accurate order of the requirements for a particular operation (or operations) far 
in advance of the day of construction. This holds for any large UK Contractor, 
whether the supplier is internal or external to an organisation. The productivity models 
proposed so far have not taken into account the need for early, accurate estimates and 
hence are less useful to industry than they could be.  

A consequence of placing a late order with a supplier, especially of plant, is to 
potentially leave an operation under resourced. To highlight the effect that a lack of 
resource has on operational performance, a study is presented to quantify the changes 
in performance encountered in an operation, resulting from a reduction in resources. 
The consequences of recruiting too much plant (over resourced) are also discussed. 
Next, a method of making productivity models more useful is presented, based on the 
philosophy that a model should be dynamic. That is, the variables which are required 
to be input by the user (planning engineer) should be realistically known at pre-
defined stages of a construction project; the model variables change (normally 
increase in number) as the time to construction draws nearer and a planning engineer 
has more knowledge of an operation. In this paper, the dynamic modelling framework 
has been applied to the productivity estimation of earthmoving operations using linear 
regression analysis, at two project stages. 

The structure of this paper is as follows: 

• Summary of the collection of data 

• The effect of poor plant allocation on construction operations 

• The dynamic modelling framework 

• An example application of dynamic modelling: linear regression analysis of 
earthmoving productivity 

• Re-planning the validation operations 

• Implementing dynamic modelling using other modelling methods 

• Conclusions and future work 

GATHERING OF REAL CONSTRUCTION DATA 
The data used in this study was collected during a time study of four road-building 
projects, undertaken by the same contractor in UK. These projects varied widely in 
terms of: the quantity of soil that was required to be moved, from the relatively small 
A52 Ashbourne relief road (120,000 m3) to the M1/A1 link road (3,000,000 m3); the 
location of the projects (South, Midlands and North of England); the soil types 
encountered; and numerous additional factors. In total, 141 earthmoving operations 
were recorded, 90 of which were deemed suitable for use in this study; the 51 others 
were discounted due to missing data. Two-thirds of the 90 operations were selected 
for use in model development, the remaining third to be used in model validation. 
Table 1 presents a list of the recorded variables and their corresponding 
determinability at: four to six weeks prior to construction (planning stage one); and, 
one week to one day before construction (planning stage two). If a variable could be 
determined with a high degree of confidence (high in the table) it was considered for 
use in modelling (see table 1).  



A method for effectively implementing construction process productivity models 
 

 1045

THE EFFECT OF POOR PLANT ALLOCATION ON 
CONSTRUCTION OPERATIONS 

It is important to highlight the effect that the under-provisioning (poor allocation) of 
plant has on the performance of construction operations. The aim of this study is to 
quantify this effect, and will do so by:  

• Using a linear regression model to recreate the thirty validation operations 
which have taken place in the past, reducing the number of haulers used in the 
operations by increments of one, until the final recreated operation uses three 
haulers less than the original. Recording the performance of each new 
operational set-up.  

• Measuring the difference (percentage) between the original performance and 
each modelled operational performance to gain some perspective on the effect 
of reducing the quantity of plant.   

Table 1: Recorded variables and variables considered for modelling 

Variable

Planning Stage One Planning Stage Two Planning Stage One Planning Stage Two

Haul road soil parameters Medium High Haul road gradient Haul road soil parameters
Haul road gradient High High Plant specifications Haul road gradient

Haul road rolling resistance Low Medium Loader bucket volume Haul road length
Haul road length Medium High Number of haulers used Plant specifications

Plant specifications High High Total volume to be moved Load cycle times
Plant operator ability Low Medium Bucket passes per load Hauler travel times

Load area characteristics Medium Medium Project number * Loader bucket volume
Type and load of obstructions Low Medium Bucket passes per load

Weather Low Low - Medium Number of haulers used
Material susceptability to weather Low Low - Medium Total volume to be moved

Load cycle times Medium High Month of excavation
Hauler manoeuvre times Medium Medium Project number *

Hauler travel times Medium High
Load dump times Medium Medium

Loader bucket volume High High
Bucket passes per load High High
Number of haulers used High High

Total volume to be moved High High
Month of excavation High High

Determinability Model Variables 

* included to allow an examination of the effect that an individual 
project has on all the collected data. If the effect is significant, 

the model will not be useful for providing estimates of new 
projects.

 
The results of the poor plant allocation study are shown in table 2; they are an average 
over the entire validation data set. Clearly, a reduction in the number of haulers causes 
a steady decline, of 16.21% per truck of operational productivity and a non-linearly 
increasing operational cost. Therefore, it is very important to ensure that an adequate 
quantity of plant is available for a specific operation, and the dynamic modelling 
method is one way of providing this.  

Table 2: Average percentage difference from the observed, for the whole validation set  

Performance 
Measure One Two Three

Productivity -16.21 -32.42 -48.63

Cost 7.53 12.01 23.70

Number of Haulers Removed
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THE DYNAMIC MODELLING FRAMEWORK 
The study in the previous section highlighted the detrimental effect of having too few 
trucks in an earthmoving operation. What causes an under-resourced operation? There 
are a number of answers to this question: an inaccurate estimate of the probable rate of 
work (productivity) is made; an order for plant requirements is submitted to the 
supplier too late to allow fulfilment. What can be done to reduce the occurrence of an 
under-resourced operation? To diminish these issues, two methods could be pursued:  

• Concurrent engineering principles should be adopted by construction firms. 
Briefly, this means bringing together all parties: designer, architect, client, 
construction planner and contractor to learn as much about the project at the 
earliest possible stage. This shall not be dealt with here. 

• The dynamic modelling framework should be applied to productivity 
estimation models. This shall now be discussed in full. 

The aim of dynamic modelling is to provide an accurate estimate of the productivity 
of a construction operation at the earliest possible stage in the planning of a 
construction project. This aim is achieved through using information about the 
operation that is realistically known at certain stages of the planning process. 
Currently, the dynamic model is split into two stages: planning stage one, four to six 
weeks prior to construction, with the aim of allowing a planning engineer to calculate 
the resource requirements; planning stage two, one week to one day prior to 
construction, to allow a confirmation of the order or make a slight adjustment to the 
order based on new information. 

The framework of the dynamic modelling philosophy is: 

• Make a list of all available variables and determine how if they are known at 
either planning stage one or two. If a variable is known it is added to a second 
list. 

• Select the significant variables from the second list for each planning stage; 
principle component analysis (PCA) was used to choose these variables in the 
study. 

• Make two models (one for each planning stage) based on the significant 
variables. 

• Validate the model to provide confidence that it provides accurate estimates. 

• At planning stage one; supply the known details of the operation to the model, 
and experiment with the number of resources to produce estimates of 
productivity and operational cost. Compare the productivity and cost estimates 
and note the plant resource which provides the best value for money, e.g. a 
compromise between speed and cost. Increase the ideal numbers of plant by 
one to provide an initial conservative estimate. Communicate these 
requirements to the plant supplier(s). 

• At the second planning stage: supply the required information to the model, to 
produce an adjusted estimate of productivity and cost; experiment with the 
plant requirements to find the compromise between speed and cost. At this 
stage the ideal number of plant should be chosen and communicated to the 
plant supplier(s). It is unlikely that the plant requirements will have changed 
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significantly, therefore the suppliers should be able to meet the contractor’s 
needs. 

AN EXAMPLE APPLICATION OF DYNAMIC MODELLING: 
LINEAR REGRESSION ANALYSIS OF EARTHMOVING 
PRODUCTIVITY 

This example demonstrates the application of linear regression to modelling 
earthmoving productivity through following the dynamic modelling framework 
outlined above. The data used in this experiment was introduced earlier in this paper. 
To re-cap, 90 operations were observed, 60 of which shall be used in model 
development, the remainder for validation.  

Select the highly determinable earthmoving process variables 
The highly determinable variables of the earthmoving process have been selected and 
are shown in table 1. Note there are 6 and 11 such variables, at planning stages one 
and two, respectively. In addition a project number index has been included to 
determine whether the models only hold true for specific projects- if this were the case 
the models’ predictive usefulness would be limited; this results in, 7 and 12 process 
variables at planning stages one and two, respectively. 

Select the significant variables of the earthmoving process 
PCA was used to select the significant variables of the process. The numbers of 
variables were reduced from: 7 to 5 at planning stage one; 12 to 9 at planning stage 
two. For both planning stages, the project index was insignificant, thus the models will 
be useful for providing predictions of future operations. 

Develop a model for each planning stage 
A linear regression model was developed for both planning stages one and two, using 
the remaining data. The regression method used was the backward elimination 
stepwise, meaning that a variable which was found to be less significant in the linear 
fit than a threshold value, would be removed. The regression is then performed again 
on the reduced data set, and this process continues until the remaining variables are 
above the set threshold of significance. The planning stage one variables were reduced 
from 5 to 3, and stage two variables reduced from 9 to 6. The regression equations for 
the productivity are: 
Productivity = 18(No. Haulers) + 10.8(Hauler Type) + 0.3(Volume) + 44.5        Stage One 

 

Productivity = -14.5(Month) + 9.6(Loader Type) +25.5(No. Haulers) – 40(Load Cycle Time)                 

                        + 27.2(Buckets per Load) – 7.2(Travel Time) + 147.7                     Stage Two 

 

How well does the model fit the data? A coefficient of variation in the model of 1 
signifies a perfect fit. However, a value of 0.7 is most likely to be an acceptable fit to 
a complex system like the earthmoving process. The R2 values for the planning stage 
one and two models were 0.755 and 0.88, respectively. Thus, these regression fits can 
be deemed to be tentatively acceptable. There is a need for more knowledge of the 
predictive capabilities of the models, and this shall be provided through model 
validation (see next indent).  
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Model validation 
The details of 30 observed operations, which had not been used in the model 
development, were used in the model validation. Validation consisted of entering the 
information of each operation into both regression models and recording the estimated 
productivity values. These values were compared with the observed productivities and 
it was found that on average: the planning stage one model overestimated productivity 
by 5.8%, with a standard deviation in results of 27.7%; the planning stage two model 
overestimated productivity by 3.13%, with a standard deviation in the results of 
14.3%. Thus, due to more information being known about the process at the later 
stage, the model of stage two is more accurate. A plot of the models’ estimates against 
the observed productivities for the validation set is shown in figure 1. Clearly, the 
models are roughly following the trend of the observed data. In conclusion, both 
models are suitable accurate for the purposes of this study.  

Validation of Linear Regression Productivity Models
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Figure 1: The results of model validation 

Using the models to order plant 
The known details of a future operation can be supplied to the validated models, in 
order to receive estimates of productivity, duration and cost. The number of plant 
required (number of haulers) can be experimented with (between 2 and 6 haulers in 
this study) and a compromise between duration and cost of an operation can be made 
to find the ideal planning solution. In this example the details of the operation, known 
at planning stage one were: Type of available hauler = Caterpillar D400D; Excavation 
volume = 400 m3. At planning stage two, the known details of the operation were: 
Month of excavation = May; Type of available loader = Caterpillar 245 backhoe 
excavator; Load cycle time = 2 minutes; Buckets per load = 7; Travel time = 6 
minutes. The number of haulers was experimented with, and the resulting productivity 
and cost estimates for each experiment, at planning stages one and two, are shown in 
tables 3 and 4, respectively. Note that in this example the trend of the costs observed 
in tables 3 and 4 are the reverse of those in table 1, the consequence being that this 
operation provides more value for money when only two haulers are used, and it is 
likely that poor forward planning would have resulted in this operation having been 
over-resourced, i.e. 3 haulers used instead of 2.   
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Table 3: Experimental results at the early planning stage (one) 

2 3 4 5 6

Productivity (m3/hr) 210.2 228.1 246.1 264.1 282

Cost (£) 216.65 271.98 319.24 360.06 395.67

Cost/ Volume (£/m3) 0.537 0.675 0.792 0.893 0.982

Number of Haulers

 

To make the decision on which operational set-up provides the best value for money a 
ratio of the cost divided by volume is calculated. As volume is fixed the ratio provides 
a basis for directly comparing the results of the two planning stages and the value for 
money of each resource quantity. In the cost/volume ratio, a smaller value signifies a 
better compromise between cost and time. Clearly, at the first planning stage, having 
two haulers provides the best value for money. Therefore, following the dynamic 
modelling framework, an order should be placed at this time, of four to six weeks to 
construction, with the plant supplier for three haulers (ideal plus one). Examining the 
experimental results at the second planning stage reveals that the situation is 
unchanged in terms of the ideal quantity of haulers. However, it is noteworthy that the 
value for money for two haulers has been reduced (cost/volume ratio increased) in the 
second stage, while the remaining hauler quantities provide increasing value 
(cost/volume ratio decreased). 

Table 4: Experimental results at planning stage two 

2 3 4 5 6

Productivity (m3/hr) 209 234 260 285 310

Cost (£) 217.97 264.75 302.36 333.25 359.08

Cost/ Volume (£/m3) 0.541 0.657 0.75 0.83 0.89

Number of Haulers

 

RE-PLANNING OF VALIDATION OPERATIONS 
Each of the 30 validation operations discussed in the previous section, were re-
planned using the methods outlined above, to produce new estimates of cost and 
productivity. By comparing the cost estimates with those actually observed in the 
operations, it is possible to calculate the average improvement/deterioration in the cost 
(per cubic metre) to complete an operation, over the whole validation set, from using 
the dynamic modelling framework to plan the operations. It was found that an average 
cost saving of £0.21 per cubic metre was possible. 

Assuming that the validation set of operations is an appropriate survey of the four 
studied projects, the cost saving per cubic metre of earth moved can be used to 
calculate the possible cost savings in all four projects. The total amount of earth 
moved in the four studied projects equalled 5.82 million cubic metres, and the actual 
cost of this work was calculated as £5.98 million. Through re-planning using the 
dynamic modelling framework the total cost could have been £4.75 million, offering a 
reduction in cost of 20.5% from the actual. It is noteworthy that this is only a 
theoretical saving to the direct cost of earthmoving- indirect costs were not 
considered. Clearly the saving indicates the potential impact that the dynamic 
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modelling framework could have on a construction industry which needs to reduce 
waste and to improve its performance.     

IMPLEMENTING DYNAMIC MODELLING USING OTHER 
MODELLING METHODS 

The following section is a brief summary of the actions required to implement the 
dynamic modelling framework in other commonly used construction process 
modelling methods.  

Case-Based Reasoning (CBR) 
CBR consists of formulating a data (case) base of past examples of a problem and 
using several different methods to identify appropriate past examples as possible 
solutions to new problems. Thus, the implementation of dynamic modelling can be 
achieved in two ways: one, as suggested in the dynamic modelling framework, point 
3- have a separate case base for each planning stage, incorporating only the significant 
variables of the respective stages; two, vary slightly from the framework, point 3 by 
building one case base holding the significant variables of both planning stages, but 
only consider, at any one time, the variables relevant to a particular stage of the 
project. The remainder of the framework can be followed using CBR. 

Artificial Neural Networks (ANN) 
ANNs form approximations of the trends contained within data sets and are therefore 
useful in modelling many non-linear or near-linear problems, such as predicting the 
productivity of the earthmoving process. ANNs work in a similar way to linear 
regression analysis and the dynamic modelling framework can be followed directly 
by: separating the data into two groups, planning stages one and two; splitting the data 
within each of these groups into two further groups- training and testing; training two 
models to mimic planning stages one and two; testing the models predictive 
capabilities (validation) and then using them to plan future construction operations.  

Discrete-Event Simulation (D-E Sim) 
Discrete-event simulation models are often driven by probability distributions. These 
distributions represent the variability contained within the process, which is being 
modelled. In the earthmoving process, the variability can be described by representing 
the stochastic elements in the process, such as the time of travelling from the loader to 
the dump area (travel time), using probability distributions. Probability distributions 
that accurately represent the stochastic elements can then be used to build up a picture 
of the productivity of the process, over an entire operation. The probability 
distributions which represent the stochastic elements will change with different 
operational conditions, i.e. the probability distributions representing the travel time at 
planning stage one, are unlikely to remain the same at planning stage two. At the 
moment, to understand the nature of this change would require an expert. However, 
Graham and Smith (2003; 2004) have produced a computer model which removes the 
need to have expert knowledge of the system to define its representative probability 
distributions, and the dynamic modelling framework shall be applied to this model in 
the future. 

CONCLUSIONS 
A by-product of poor forward planning is that a construction project can be under-
resourced. This is due to a plant/materials supplier not having a sufficient stock, at late 
notice, to meet the demands of a construction project. This study highlighted the effect 
of having under-resourced operations on the earthmoving process performance. It was 
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found that for every hauler unit an operation was under resourced by, the productivity 
was reduced on average by 16%, with a concurrent non-linear increase in cost. Thus, 
the provision of too little resources should be avoided. Intuitively, providing too many 
resources should also be avoided, to prevent the incursion of additional costs- an extra 
hauler makes a large difference to the cost of an operation, and this can propagate for 
a whole project.  

In an attempt to improve the planning of projects, and to prevent the issues raised 
above, this paper proposed that construction productivity models are developed 
following the dynamic modelling framework. This framework consists of using all the 
significant knowledge possessed by a planning engineer at specific project stages, to 
allow accurate estimates to be made of the resources required in an operation, well in 
advance of construction.  

The dynamic modelling framework was applied to the linear regression analysis of the 
earthmoving process, providing models which accurately recreated a validation set of 
operations. Experimentation was undertaken on how the productivity and cost of the 
operation changed with a change in the number of haulers. The results of this 
experimentation allowed the validation operations to be theoretically re-planned, with 
an ideal number of haulers selected for each situation. This new estimate of 
performance, in terms of cost and duration was compared with the observed values. 
This comparison was used to determine if any theoretical improvement could have 
been made, by applying the dynamic modelling framework to the planning of 
operations in the first place. It was found that a theoretical 20% saving on cost could 
have been made through applying the dynamic modelling framework.  
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