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Stochastic construction operations, such as concreting, have been estimated 
effectively in the past using simulation. However, this effective estimation is only 
possible if the input (frequently probability distributions) to a simulation model is 
accurate. This accuracy is difficult to attain, and has prevented the widespread 
application of simulation in industry. An artificial intelligence technique, Case-Based 
Reasoning (CBR) is proposed as a method of improving the accuracy of input to a 
simulation model, allowing better estimates of concreting operations to be made. A 
simulation model, MatSim and a hybrid CBR-simulation model, CBRSim, have been 
developed (based on real construction data), validated, and compared to measure any 
improvements in output as a consequence of using a CBR-based input. CBRSim 
produced results that were more accurate and consistent than those of MatSim, 
indicating the potential advantage of using a CBR-based input in a simulation model 
of concreting operations. CBRSim is useful for the planning of concreting operations 
and may increase the industrial use of simulation as an effective estimation tool of 
stochastic construction operations. 

Keywords: case based reasoning, concreting operations, simulation modelling, 
planning. 

INTRODUCTION 
The concrete supply, delivery and placement process (concreting operations) is 
stochastic in nature and is often inefficiently managed. Concreting operations require 
analysis using non-deterministic techniques (Smith, 1998a) such as discrete-event 
simulation, which has been used to estimate the output of construction operations for 
over three decades (Martinez and Ioannou, 1999). Simulation has been proven as an 
effective tool for improving construction process planning (Halpin, 1993), but 
unfortunately the wide application of the technology in industry has been prevented by 
usage difficulties (Shi and Abourizk, 1997). One such difficulty is: in constructing and 
using a simulation model an understanding is required of the stochastic nature of the 
process concerned (Zhang et al., 2002). This nature is frequently represented by 
probability distributions and the importance of their effect on the accuracy of 
simulation output cannot be overemphasised (Abourizk et al. (1994), Banks and 
Carson (1984)). Therefore, to achieve an accurate simulation output, the probability 
distributions must describe the stochastic nature of construction operations as closely 
as possible, and therein lies the difficulty: How does a planning engineer with little 
statistical knowledge determine the correct probability distributions and parameters 
that represent a particular construction operation? This paper presents an artificial 
intelligence technique, Case-Based Reasoning (CBR) as a possible solution to this 
problem. It is proposed that CBR could be used to: reduce the level of statistical 
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knowledge required to use simulation; and to improve the input to, and consequently 
the output of, a simulation model.  

Two models of the concreting system are presented and validated: a discrete-event 
simulation model, MatSim; and a hybrid CBR-simulation model, CBRSim. Both 
models: are based on probability distributions that have been derived from real 
construction project data; and, model the overall duration of a concrete pour. Before 
outlining the models, this paper will look briefly at the process of concrete supply, 
delivery and placement. 

THE CONCRETING SYSTEM 
In previous research, concreting operations have been separated into two processes: 
batching and delivery (for example, Sawhney et al., 1999); and pumping and placing 
(Dunlop and Smith (2000 and 2002)). In this study, the concrete supply, delivery and 
placing process is considered in its entirety. In an ideal situation, a truck mixer is 
filled with concrete at the batching plant and travels to the construction site. On 
arrival, the truck mixer moves into position at the pump and discharges its load. 
Finally, the empty truck mixer is cleaned in the washout area and proceeds back to the 
batching plant, completing the cycle. In reality, the events that occur within the system 
(e.g. truck arrival times and pump start times) take place at irregular intervals (Smith, 
1998b). Queuing of trucks at the batching plant, pump and washout areas can be 
expected, as it is often unlikely that a truck will arrive simultaneous to the previous 
truck departing. If trucks arrive late, there will be a lengthening of the process and 
under-utilization of the pump- resulting in an inefficiently managed pour of the 
concrete. The stochastic nature of the concreting system can be recreated by using 
probability distributions to represent the following times of interest: travel time from 
batching plant to construction site (travel to site time); positioning time at pump 
(position time); discharge time (pump time); time to clean the truck mixer (washout 
time); travel time from site to batching plant (travel to batcher time); and load time 
(batch time). The probability distributions can produce times that are used to recreate 
a typical cycle of the process. Through the simulation of multiple cycles, the attributes 
of a particular operation’s set-up can be provided, such as pour duration (from which 
productivity can be derived) or pump utilization rates. To ensure that the model is 
realistic and accurate, it must be based on data collected from real construction sites.  

DATA COLLECTION 
The data used to build both MatSim and CBRSim were collected during a time study 
of four construction projects, which are detailed in Table 1. In total, 225 concrete 
pours were observed and the variables of interest were recorded. These variables 
were: pour date and type, weather, target and actual slump, batch time, arrival on site 
time, position time, start and completion of pumping times, washout time, batch 
quantity, total pour volume, truck wait times (at batcher and pump), batcher and pump 
idle times, and the number of trucks involved in the pour. From the observed data, the 
times of interest mentioned previously were extracted. The data that were used in 
validation were collected from a construction project independent from those used to 
build the models (See Table 1). In total, 63 pours were observed and from this data 
set, 20 pours were selected at random for use in the validation process. 
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Table 1: Details of studied projects 

DISCRETE-EVENT SIMULATION MODEL, MATSIM 
MatSim is a computer model written in the Matlab programming language and is 
based upon the discrete-event simulation methodologies described fully in Smith 
(1998a and 1999) and Law and Kelton (2000). To summarise the steps involved in the 
developing the model were: 

• Fitting probability distributions. The theoretical probability distributions that 
best represent the previously mentioned times of interest were identified using 
a commercial package, BestFit. The fit of the distributions to the data was 
assessed using the K-S test and visual assessment. Generally, the data sets 
were best represented by the lognormal, gamma and beta distributions and 
only they will be considered further in MatSim.  

• Generation of random variates. A random variate is a value (in this case a time 
of interest, e.g. position time) generated at random from the chosen probability 
distribution. Assuming a good fit between the data and the probability 
distribution, the random variate is a true representation of an actual value 
(Dunlop and Smith, 2000). A full discussion on the methods of generating 
random variates can be found in Law and Kelton (2000).  

• Use random variates to synthesise ‘events’. An event is something that 
changes the state of the concreting system. It could be an arrival or departure 
at the batching plant, pump or washout area. 

• Model operations. A real operation is a series of events, the timing of which 
determine its attributes (Dunlop and Smith, 2000) (for example, pour 
duration). These attributes can be determined for a simulated operation and to 
reduce variance, many replications are performed. 

HYBRID CBR-SIMULATION MODEL, CBRSIM 
CBR is the process of reasoning and learning by storing cases- records of specific 
prior reasoning episodes- and retrieving and adapting them to aid new problem 
solving or interpretation in similar situations (Kolodner, 1993). Aamodt and Plaza 
(1994) described the CBR process as cyclical, comprising of the following: 

• Retrieval of the most similar case(s) from the case base 

Project Use in Study
Year of 

Com pletion Type of Project Location
No. of Observed 

Pours

1 Build Model 2000
W astewater Treatm ent 

Plant Construction Aberdeen, UK 152

2 Build Model 2000
W astewater Treatm ent 

Plant Construction Peterhead, UK 10

3 Build Model 2000
W astewater Treatm ent 

Plant Construction Fraserburgh, UK 18

4 Build Model 2000
W astewater Treatm ent 

Plant Construction Dundee, UK 45

5 Model Validation 1994

Motorway Viaduct 
Strengthening and 

W idening Cheshire, UK 63
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• Reuse of the case(s) to attempt to solve the problem 

• Revision of the proposed solution, if necessary, to solve the problem 

• Retention of the modified solution as a new case 

The construction domain is a growing area for applications of CBR and it has been 
used successfully in solving prediction and estimating problems (Morcous et al., 
2002). This study intends to utilise CBR to predict the probability distributions and 
parameters that best represent a particular concreting operation. The predicted 
distributions will subsequently be used in a simulation model, forming the hybrid 
CBRSim model. CBRSim is based upon the cyclical process described by Aamodt 
and Plaza and its methodology is shown in Figure 1. In developing CBRSim the 
stages were: 

1. Case base design 

2. Case retrieval 

Case Base

Solution 
Chosen by 

User. Result 
stored in case 

base

Similarity scores   
generated and 
cases retrieved

User Inputs 
Target Cases

Solution

Sim ulation is undertaken

Sim ulation OutputFigure 1: Flowchart of CBRSim model 

Figure 2: Feature indexing system in the CBRSim model 
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3. Simulation using CBRSim  
 

Case Base Design 
The case base is the storage area for prior cases. Cases must be parameterised, 
typically by being divided into a series of distinct features by means of which their 
similarity to other cases can be judged. In CBRSim, the case base initially stored 225 
cases, with all the cases sharing the same record structure of 5 input and 5 output 
features. The input features are: the number of trucks, pour volume, pour type, month 
of pour and weather. Each feature is assigned an index to aid the retrieval process (See 
Figure 2). The output features are the probability distributions and parameters that 
best represent each concreting operation, identified using BestFit. Seven distributions 
provided suitable representations of the concreting process, they were: uniform, 
normal, lognormal, exponential, weibull, gamma and beta. The next stage of the CBR 
process is case retrieval. 

Case Retrieval 
A CBR model derives its power from its ability to retrieve relevant cases quickly and 
accurately from its case base (Arditi and Tokdemir, 1999). To perform the retrieval 
process, CBRSim measures the similarity between a user specified target case and the 
indices of each case stored in the case base. This similarity measurement is in 
percentage form and is based upon Euclidean distance measurements, as detailed in 
Hand et al. (2001). If the similarity between the target case and a stored case is greater 
than 75%, the stored case is retrieved from the case base and is placed in a temporary 
storage area. Once all the relevant stored cases have been placed in the temporary 
storage area, the user is permitted to view them. The user is then required to select a 
case based only on the similarity measurements, removing the need for a user to have 
statistical knowledge of the process. If the target case features are not identical to the 
features of the selected case, CBRSim retains the target case features and the 
probability distribution information as a new case. Thus providing the learning ability 
of the model and completion of the CBR cycle. Finally, the case base should be 
updated over time with the details of new construction projects, improving the 
knowledge of the model. 
 
Simulation using CBRSim 
The determination of the most representative probability distributions for a given 
concreting operation ends the CBR side of the hybrid model. The methodology used 
by CBRSim to undertake simulation of the concreting process is the same as in 
MatSim. However, the computing methods used in the two models differ. CBRSim 
was developed using a spreadsheet package, Microsoft Excel, allowing the user to 
fully understand each step in the modelling process. This study must now validate 
both MatSim and CBRSim. The validation process shall also be used to compare the 
accuracy of the two models. 

VALIDATION OF MODELS 
Validation is the process of determining whether a simulation model is an accurate 
representation of the system. The concreting operation models, MatSim and CBRSim 
are intended to represent the existing system, not replace it, in order to allow 
estimations of the system output to be produced. Therefore, the model output (overall 
duration of a concrete pour) and data from the existing system can be compared to 
ascertain if the model is valid. In this study, a correlated inspection approach was used 
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to indicate the validity of both models. Correlated inspection at its most extreme 
requires that a model be driven by exactly the same observations as the real system, 
but it is unclear if this indicates the predictive powers of a model (Smith et al., 1995). 
Therefore, the model will be driven with random variates generated from probability 
distributions.  

20 concrete pours (validation observations) were randomly selected from the 
validation data set discussed earlier. MatSim was investigated when random variates 
were generated from the lognormal, gamma and beta probability distributions. The 
parameters of these distributions were tailored to each individual pour, using 
knowledge of the stochastic nature of the process. The performance parameter of 
interest in this study is the pour duration and the results are shown in Figure 3. To 
overcome the variance in simulation output the model’s results were replicated 100 
times, and an average result was taken. 
 Table 2: Correlated inspection results for pour duration 

 

Comparison of Results 
It was the aim of this study to determine if a CBR derived input could improve the 
output of a simulation model. This improvement should be measured in terms of 
accuracy and reliability of the model. An examination of the results presented in 
Figure 3 shows that CBRSim has the ability to provide better estimates, generally, 
than MatSim. CBRSim achieved pour duration estimates to within a range of +/- 3% 
of the observed values, compared with a range of +/- 20% produced by MatSim. In 
terms of reliability, CBRSim estimated to within 10% of the observed value in 20 out 
of 20 validation observations (Table 2). In contrast, MatSim had a poor reliability 
record for pour duration estimating less than 50% of validation observations within 
10% of the observed values (Table 2). In summary, both models provide reasonable 
estimates of the pour duration and can be affirmed as valid. 

Validation Overall Pour Duration MatSim MatSim MatSim
Observation (mins) CBRSim Lognormal Gamma Beta

1 230 -1.5 -16.4 -6.3 -2.5
2 316 3.0 10.8 21.3 22.4
3 244 0.7 -9.3 0.4 5.7
4 351 -0.8 -22.1 -19.9 -17.8
5 396 -0.9 -2.5 8.3 15.4
6 318 1.0 -23.3 -18.9 -22.1
7 272 -3.5 -10.0 -7.6 -5.7
8 303 -2.4 -18.5 -15.8 -13.5
9 273 -1.7 -23.4 -21.3 -17.0
10 331 0.6 -19.3 -14.4 -12.6
11 409 -1.7 -18.0 -15.3 -12.6
12 288 -0.3 -8.8 -10.3 -6.3
13 235 2.8 -12.5 -8.6 -5.0
14 223 2.0 -7.8 -4.9 1.5
15 294 -1.0 -9.9 -4.0 -0.9
16 199 2.4 2.7 1.3 6.7
17 280 0.0 -7.0 -8.9 -3.9
18 225 -1.0 -22.5 -18.9 -14.8
19 255 1.2 19.3 -12.7 -11.9
20 477 0.2 16.5 11.9 14.2

Percentage difference from observed value
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Figure 3: Box plots of percentage difference between model and observed values 

CONCLUSIONS 
In the past, simulation has been used to estimate the output of construction operations 
and has proven to be an effective tool for planning random construction processes, 
such as concreting. However, simulation is a difficult tool to use, as the output of a 
simulation model will be inaccurate if the input is unrepresentative of the 
environment. When probability distributions are the input to simulation models, their 
characteristics can be estimated using CBR. This removes the need for the user to 
have statistical knowledge of these distributions. A simulation model, MatSim and a 
hybrid CBR-simulation model, CBRSim were developed based on real construction 
project data. They were validated using data from a construction project independent 
to those on which the models were built. The pour duration estimates from both 
models were compared to determine the effect of using CBR in this study. It was 
found that CBRSim was able to estimate pour durations to within +/- 3% of the 
observed pours, compared with +/- 20% from MatSim. In terms of reliability, 
CBRSim estimated to within +/- 10% of the observed values in 100% of the validation 
observations. MatSim was unable to match this reliability record. It may be concluded 
that a case-based reasoning input simplifies the use of simulation, whilst improving its 
accuracy-making CBRSim a useful tool for the planning of concreting operations. The 
simplification of simulation modelling may increase the industrial application of 
simulation as an effective estimation tool of stochastic construction operations. 
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