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There have been several research works into the examination of the relationship 
between project total cost and total duration. To this end, the activity crashing 
technique stands out as an intricate, comprehensive and complex method for 
evaluating various cost-time scenarios. The technique can be used to identify the 
optimal solution: the project duration that yields the least project cost. However, what 
is regarded optimal for the contractor is likely to render a non-optimal solution for the 
client, and visa versa. Subsequently, depending on their priorities, the contractor and 
the client could examine a number of compromised solutions ranging between the 
'least favourable solution' for the contractor, to the 'least favourable solution' to the 
client. Mathematical models are offered which represent the 'least compromise 
solution' and 'equal compromise solution'. In the case of 'least compromise solution', 
the total sum of compromises by both parties is minimised. Whereas, in the case of 
the 'equal compromise solution', both parties agree to compromise by an equal 
amount.  

Keywords: activity crashing, optimal solution, project cost-time, mathematical 
modelling. 

INTRODUCTION 
For any given project, the relationship between the total cost and total duration (time) 
can be expressed as a curve which represents infinite possibilities of cost-time 
scenarios. The examination of the trade-off between project cost and duration can 
reveal the existence of a unique project duration that yields the lowest project cost. 
This particular combination is referred to as the most economical solution.  However, 
the most economical solution for the contractor is likely to yield a non-economical 
solution for the client and vice-versa. This is due to the distinct differences between 
the cost-time trade-off curves for the contractor and for the client.  

The most economical solution is a reflection of the contractor's (or the client's) cost-
related priorities only. In other words, this solution is attractive only if the 
organisation's priority is to minimise the cost without due attention to project duration 
and other issues such as arrangements to accommodate risk sharing and the level of 
flexibility to deal with extensive variations. Cost minimisation is not always the most 
important criteria. Indeed, the generalisation of priorities, as a policy, undermines the 
intricate nature of any business operation. This is particularly true about construction 
projects, because they are envisaged as the building blocks of the firm's corporate 
objectives. In this respect, they are the means to an end rather than the end in 
themselves. Therefore the project-related priorities of each party are determined by 
their particular circumstances. Subsequently, for any particular project the possibility 
exists for the client and the contractor to negotiate a compromise solution whereby 
their priorities are configured in a complimentary rather than conflicting manner.  
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This research examines the details of the relationship between project total cost and 
duration form the perspectives of both the contractor and the client. The components 
comprised in each cost-time trade-off curve are articulated and both cost-time trade-
off curves are represented mathematically. These curves are then used to develop two 
further mathematical expressions representing two modes of cost-time compromise  
between the contractor and the client.  

PROJECT COST-TIME TRADE-OFF  
The relationship between project cost and project duration has been a matter of 
concern to researchers since the early 1960s. The fundamental complexity of cost-time 
trade-off examination stems from the need for extensive and specific data for the 
analysis. The data need to be extensive in order to reflect the underlying trend 
representing the overall relationship between cost and time. Also, the data need to be 
specific to the particular definition and circumstances of the project.  

Since each and every construction project is unique, the generation of a large number 
of hypothetical pairs of cost-time solutions could be somewhat problematic. It is 
unlikely that a project is repeated many times, each with a different cost-time 
scenario, covering a range of possibilities from the least to the highest cost-time 
solutions.  

There have been many attempts to overcome this problem. For instance, Fullkerson 
(1961), Kelly (1961), and Mayer and Schaffer (1965) used the linear programming 
optimisation technique to formulate the relationship between the two variables. These 
works laid the foundation for future research by Cusack (1984, 1985a) where he 
generates the most optimised solution for project cost by focusing on the 
'breakthrough' points only. Further elaboration relied on the use of heuristic methods 
in order to explain the uncertainties associated with the most optimise solution 
(Cusack 1985b). In parallel with these developments, the work by Phillip and 
Dessouky (1977) experimented with generating data through activity crashing. 
Despite alternative simplified methods such as the use of Monte Carlo simulation for 
generating data (Howes et al. 1993), the activity crashing technique has remained as 
the most viable.  

Figure 1: Contractors' Direct Costs 
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PROJECT COST-TIME TRADE-OFF CURVES 

The Contractor 
As shown in Figure 1, the contractor's cost-time curve is made up of the 
superimposition of the contractor's direct costs and indirect costs.  

Contractor's Direct Cost [CDC] 
This is the main component of the overall contractor's cost-time curve. CDC is 
generated through the activity crashing exercise.  

Activity Crashing 
Basically, the activity crashing technique is used to simulate a variety of cost-time 
scenarios for a given project. As shown in Figure 2, the simulation is accomplished by 
selecting and crashing (compressing) each critical activity. The selection is based on 
finding activities with steepest cost-time slopes, as they yield higher changes in cost 
per unit of compression. At each stage a new pair of project total cost and time is 
generated. This is continued until the activity reaches the full-crash status (see Antil 
and Woodhead, 1990). During the activity crashing exercise, it is likely that some 
previously non-critical activities may become critical, in which case, the crashing will 
also apply to them.  

 

For the crashing exercise, the relationship between activity cost and duration is 
assumed to be linear (Kelly, 1961, Fulkston, 1961 and Cusack, 1985b).  

The application of this technique to the activities of one project is likely to generate a 
number of cost-time alternatives. However, often the generated number of pairs is not 
enough to create the cost-time curve. Further, the use of one project is unlikely to 
generate data that is representative of that particular type of project. Therefore, the 
exercise is applied to a number of similar projects. For each activity of each project, a 
series of cost-time points are generated. The combination of all points generated from 
all projects provides adequate number of points for the activity. Subsequently, a linear 
regression is fitted to the data and the resulting regression model can be used to 
generate adequate data. This process is repeated for each critical activity and those 
likely to become critical during the process. 

 

It should be noted that the aggregation of all projects requires that they are 
standardised into a series of common set of activities. An example is shown in Table 
1. 

Figure 2: Procedure for Activity Compression
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Once, an adequate number of project cost-time points are generated, a non-liner 
regression line is fitted to the data. Normally, a quadratic fit will suffice, but 
sometimes a cubic fit provides a better representation. Figure 3, shows an example of 
a cubic fit applied to Harmony Housing projects in Hong Kong. On this occasion the 
regression model produced an R-Squares value of 99.7%. (Khosrowshahi, 1997).  

This relationship is generally expressed as follows  

(1) CDC = a1 + b1 T + c1 T2 + d1 T3  a1=constant, b1, c1 & d1 are coefficients 

Contractor's indirect costs [CIC]:  
These are represented by the preliminary items such as field management, plant, 
temporary site facilities and head office support (Hawkny 1965). CIC is a function of 
time and assumes a linear form.;  

(2)      CIC = a2 + b2 T 

Hence, contractor’s total costs CTC  = CDC + CIC.  

(3)     CTC = a1+a2 + (b1+b2) T + c1 T2 + d1 T3   

 

The Client 
As shown in Figure 4, the client's total costs (LTC) is comprised of all the costs 
incurred by the contractor plus  additional costs consisting of the contractor's profit, 
interest charges, and other time-related costs. 

Table 1: Standardised Activities 

Figure 3: Regression Line: CDC Curve 
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Contractor’s profit ( P );  

Measured as % of contractor’s total cost 

Interest Charges on Cost of Land [Il].   

The relationship between interest on land costs [Il] and duration [T] is expressed 
linearly as; 

(4)  Il = a3 + b3 T  a3 and b3 are constants 

To construct this equation, two points need to be identified. These are the interests at 
normal-time and least-time. Here, the compound interest calculation applies.   

L * (1 + I/100) T I = average interest rate  

L = cost of land (which can be expressed as a proportion of client total cost) 

Interest on Capital-in-use [INTciu]  

In order to fund the project, the client requires cash. This is either provided through 
borrowing or they are supplied from the reserves. Therefore, the company either pays 
interest or is deprived from earning interest. Normal interest charge calculation is used 
to evaluate the role of interest charges. Project cash flow often assumes a non-linear 
form and there are many methods for their forecast (e.g. Khosrowshahi 1993). Here, 
for simplicity of calculation, linear relationship is assumed. The interest charge 
calculation is given as follows.  

(5)  INTciu = (CTC)(I+P)(Ic/100)  

      Ic= .5 * interest rate * project duration 

Other Time Related Costs [Vi] 

Figure 4: Client's Total costs (LTC) 
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There are other costs such as professional management and supervisory fees and loss 
of income due to extended project duration (negative income). These costs are 
assumed to increase linearly with time and they are calculated as follows; 

ΣV = V1 + V2 + . . Vi + . . + Vn  where,  Vi = ai + bi T 

These costs too are subject to interest charges at the rate of Ii. Averaged over half the 
period of application, the interest on Vi is; 

(ai + bi T)(0.5 Ii/100). 

Therefore, the total of clients other time related costs and their respective interest 
charges are; 

(6)  Vint = (ai + bi T)(1 + .5 Ii/100) 

Hence, the client’s total cost LTC is the summation of the above costs.  

(7) LTC = (CTC ) (1 + P) + INTciu + Il + Vint    P=profit/100 

= (P+1) (1+.01Ic) (a1+a2 + (b1+b2)T +c1T2 +d1T3) + (a3+b3T) + (1+.005Ii)(ai+biT) 

= x[(a1+a2+a3/x+ yai/x)  +  (b1+b2+b3/x+ybi/x)T +  c1T2  +  d1T3] 

where   x = (P+1)(1+.01Ic)  and    y = (1+.005Il) 

THE MOST ECONOMICAL SOLUTION 
The most economical solution for the contractor [Yec & Tec] and for the client [Yel & 
Tec] are calculated by identifying the project duration that corresponds to the point 
where the first derivative of the LTC is equal to zero.  

The Contractor 

From equation 3, the relationship between contractor’s most economic cost [Yec] and 
its corresponding duration [Yec] are given below; 

8)  Yec =  a1+a2 + (b1+b2) Tec + c1 Tec
2 + d1 Tec

3 

   ∂CTC / ∂T = 0 = b1+b2 + 2c1 T + 3d1 T2 

 

Hence  

 

There are two solutions for Tec. The solution, which produces a positive result, when 
applied to the second derivative of equation 3, (d2CTC / dT2 = 2C1 + 6d1T) gives the 
most economical solution. Then Tec can be inserted into equation 8 to give the most 
economical cost;  

The Client.  
From equation 7, the relationship between client’s most economical cost [Yel] and its 
corresponding duration [Tel] are given below; 

 (9)  Yel=x[(a1+a2+a3/x+ yai/x) + (b1+b2+b3/x+ybi/x)Tel + c1Tel
2  +  d1Tel

3] 

  ∂LTC / ∂T = 0 = b1+b2+b3/x+ ybi/x  +  2c1 T + 3d1 T2 

Hence       

ecT  =  
-2 1c   4 1

2c  - 12 1d ( 1b + 2b )
6 1d

±

elT  =  
- 2 1c   4 1

2c  -  12 1d ( 1b + 2b + 3b / x + iyb / x)

6 1d

±
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The valid solution is identified by inserting Tel values into the second derivative of 
equation 7 (d2LTC / dT2 = 2C1 + 6d1T). Again, we are interested in the Tel that 
produces a positive result. The value for Tel is then inserted into (9) to calculate Yel.  

CONTRACTOR-CLIENT COST-TIME COMPROMISE 
SOLUTIONS 

As noted earlier, due to their varied priorities, there may be circumstances where the 
client and the contractor agree to negotiate a compromise solution. Theoretically 

speaking, there are infinite cost-time scenarios that exist between the client's most 
optimum solution and the contractor's most optimum solution. Obviously, in any 
negotiating situation, the parties can arbitrarily select and agree on a cost-time 
solution. However, as well as the two extreme points (the client and contractor 
optimum solutions) there are two other cost-time solutions that can be optimised. 
These two solutions involve both the client and the contractor, thus, their 
consideration may be of mutual interest to the parties. These options are discussed 
below and their corresponding generalised mathematical expressions are developed. 

Equal Compromise Solution 

In this compromise option the parties agree to share the compromise on an equal 
basis. In other words, the project duration would be such that both parties deviate from 
their respective minimised costs by an equal amount. In order identify the equal 
compromise solution, the client's total cost curve (LTC) is physically lowered by Yd 
amount, to a new position (LTCshift) whereby both optimum solutions are placed on 
the same horizontal line. This is shown in Figure 5.  

Figure 5: Equal Compromise Solution
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Since   Yd = Yel - Yec   

LTCshift = LTC - Yd    

For duration Te-compromise (or Te-c), the equal-compromise cost will be produced. This 
relates to the point where CTC and LTCshift intercept.  

Therefore, the equal-compromise cost is calculated by equating CTC and LTCshift for 
T=Te-c. 

From 7 & 10      LTCshift = LTC-Yd   = CTC(1+P) + INTciu + Il + Vint - Yd 

Set    CTC(1+P) + CTC(1+P)(.1Ic) + Il + Vint - Yd - CTC= 0 

Hence   CTC [P + (1+P) (.01Ic) ] + Il + Vint - Yd = 0 

Hence  

[P+(1+P)(1+.01Ic)] [a1+a2 + (b1+b2)Te-c + c1Te-c
2 + d1Te-c

3] + a3+b3Te-c  +  (1+.005Ii) 
(ai+biTe-c) - Yd=0 

Hence   a1+a2 + (a3+yai-Yd)/x + (b1+b2+(b3+ybi)/x)Te-c + c1Te-c
2 + d1Te-c

3 = 0 

where  x= [P+(1+P)(.01Ic)]   & y= (1+.005Ii) 

 

There can be three values for Te-c.  The valid solution is the positive value, which 
yields the lowest cost. 

Optimum Compromise Solution 

Any deviation from the optimum solution of the contractor or the client, increases the 
project cost for that party. Similarly, any deviation from the equal compromise 
duration yields financial advantages for one party at the detriment of the other party. 
However, there is a particular project duration, which minimises the total sum of 
compromises by both parties. In comparison to the equal compromise solution, the 
optimum compromise solution is likely to favour one party over the other.  

 

As shown in Figure 6, the duration (To-compromise or To-c), which minimises the total 
sum of the compromises for the client (Hl) and the contractor (Hc), relates to the 
optimum-compromise solution. In order to minimise the aggregate of Hc and Hl, the 
derivative of the equation of (CTC + LTC = S), must be set to zero. 

 

S =  CTC+LTC = 2CTC +(CTC)P + INTciu + Il + Vint 

   = [(2+P)+(1+P)(.01Ic)][a1+a2 +(b1+b2)T +c1T2 +d1T3] + a3+b3T + (1+.005Ii)(ai+bi)T 

   = x[a1+a2 +(a3+yai)/x +(b1+b2+(b3+ybi)/x)T + c1T2 + d1T3] 

where   x= [(2+P)+(1+P)(.01Ic)] & y= (1+.005Ii) 

Set     ∂S / ∂T = 0 = b1+b2+(b3+ybi)/x  +  2c1 T  +  3d1 T2 

Hence, solve for time ( or To-c ) 

 o cT  =  
- 2 1c   4 1

2c  -  12 1d ( 1b + 2b + 3b / x + iyb / x)

6 1d−
±
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There are two possible durations that will produce optimum-compromise solutions. 
Alternate choice of these durations will switch the favour from the client to the 
contractor and visa versa. 

CONCLUSIONS 
The contractor's Cost-time trade-off curve are examined in greater detail and 
contrasted against the client's cost-time trade-off curve. For both curves, the 
generalised mathematical expressions are developed, taking into account all possible 
costs contributing to both the client and contractor's cost-time curves. Situations were 
discussed where the parties might negotiate and agree on a compromise cost-time 
solution. To this end, an infinite number of possibilities exist in the range between the 
client's most optimum duration and the contractor's most optimum duration. The 
choice of any solution within this range is likely to increase the project cost for one 
party at the cost of the other. However, if the parties agree to negotiate a compromise 
solution then there are two cost-time solutions that can be optimised: equal 
compromise solution and optimum compromise solution.  While the former option 
enables the parties to equally divide the compromises, the optimum compromise 
solution minimises the total sum of compromises sustained by both parties. The 
generalised mathematical expressions for these solutions are also developed.  

REFERENCES 
Antill, J M & Woodhead, R W (1990) Critical Path Methods in Construction Practice. 4ed. J 

W & Sons. 

Cusack, M (1984) The Use and Limitation of Mathematical Models in the Planning & Control 
of Construction Projects. Construction Management & Economics, vol. 2. 

Cusack, M (1985a) A Simplified Approach to the Planning & Control of Project Duration. 
Construction Management & Economics, 3(1)vol. 3, no 1. 

Cusack, M (1985/b) A Simplified Approach to the Planning & Control of Project Duration. 
Construction Management & Economics, vol 3,( no 1). 

Franks, J (1984) Building Procurement Systems, CIOB, Ascot. 

Figure 6. Optimum Compromise Solution 



Khosrowshahi 

 848

Fulkerson, D (1961) A Network Flow Computation for Project Cost Curve. Management 
Science vol. 7, Jan. 

Hawkney, J W (1965) Control and Management of Capital Projects. J Wiley & Sons Inc., 
p126. 

Howes, R, Fong, D & Little B (1993) An Integrated Cost-Time Approach to Risk Analysis for 
Construction Projects. CIB W-65, vol. 3, Sept. pp 1435-1441 

Kelly, J E (1961) Critical Path Planning and Scheduling:mathematical basis. Operational 
Research, vol. 9(, no 3), pp 296-320 

Khosrowshahi, F (1991) Simulation of expenditure patterns of construction projects, 
Construction Management and Economics, vol. 9(, no 2), pp 113-132. 

Khosrowshahi, F (1993) Deterministic Management Decision Making Using Forecasting 
Models, Management of Information Technology for Construction, first International 
conference, Singapore 17-20. 

Khosrowshahi, F and Howes, R. (1995) Construction Potential clients; Construction 
management Procurement, vol1, report for Schal International.  

Khosrowshahi, F and Kaka, A (1996) Estimation of Project Total Cost and Duration for 
Housing Projects in the UK, Building and Environment Journal, no 4, pp 373-383.  

Masterman, J W E (1992) An introduction to building procurement systems, E & FN London: 
Spon. 

Meyer, W L & Schaffer, L R (1965) Extending CPM for Multiform Project Time-Cost Curve. 
Proceedings of American Society of Civil Engineers, Journal of Construction Division 
91, 45-67. 

Phillips, S & Dessouky, M I (1977) Solving the Project Time/Cost Trade Off Problem Using 
Minimal Cost Concept. Management Science, vol. 24, no. (4), Dec. 

Siemens, N (1971) A simple CPM time-cost trade off algorithm, Management Science, vol. 
17, no. (6), Feb. 


