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Over the next years, it is expected that machine learning will be widely implemented 
within fields in the construction context, such as construction planning.  As 
construction projects tend to be influenced by interrelated issues resulting in cost 
and/or time overruns and lower performance, it has been continuously attempted to 
develop predictive planning methods and tools, in order to mitigate such issues.  This 
study aims at investigating possible applications of machine learning for construction 
planning, noting their impact on project performance, and finally commenting 
critically on the issues of responsibility in action-taking, accountability in decision-
making, and the still crucial need for human reasoning.  Methodologically, a literature 
review on machine learning applications in construction project planning is carried 
out, and then two particular implementation cases are selected for a more in-depth 
analysis.  The first case draws on a productivity survey of construction projects in 
Sweden, where the relative data is analysed to find the most influential factors behind 
project performance; then, statistical correlation is used to find the features that are 
strongly correlated with four performance indicators (cost variance, time variance, 
and client- and contractor satisfaction), and a supervised machine learning analysis is 
done to develop a model for predicting project cost, time and satisfaction.  The second 
case elaborates on the appraisal of constructability of civil engineering projects 
through technical project risk analysis; the model utilizes both unsupervised machine 
learning for the understanding and pre-processing of data, and supervised machine 
learning for the development of the predictive system.  Following the above analysis, 
it is argued that there is a need for human reasoning in construction planning, even 
more so after the introduction of machine learning.  It is not enough to include human 
aspects in the machine learning modelling; it is also crucial to strengthen qualified 
reasoning in the decision-making for construction project planning and being 
responsible in action-taking and accountable in decision-making. 
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INTRODUCTION 
Construction projects are usually affected by multiple and interrelated factors which 
have a direct impact on their performance (e.g. cost and time of delivery) and 
productivity, such as poor management practices, unclear goals and performance 
measure, and crises orientation (Forbes and Ahmed 2010).  Construction projects 
suffer from scheduling problems related to the optimal sequencing of activities and 
resource allocation (Zhou et al., 2013, Wauters and Vanhoucke 2014).  There are also 
problems associated to uncertainties in design, construction management and decision 
making (Lu et al., 2012).  Among cases such as the aforementioned, and regardless of 
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emerging performance measures (such as ones related to safety and environmental 
impact), delivery cost and time are still considered most important for construction 
planning and construction project performance evaluation (Chan and Chan 2004). 
In tackling such issues within construction planning, as well as within the ongoing 
digitalization transformation of the construction sector, machine learning (ML) can 
play an important role both in research and practice (Kaplan and Haenlein 2019).  
Systems that utilize ML are “computer systems that automatically improve through 
experience” (Jordan and Mitchell 2015, Witten et al., 2016, Portugal et al., 2018).  In 
this context “experience” means new data from the domain of the system.  For ML to 
identify and verify any fundamental statistic, computational, and information theory 
laws that govern the respective learning systems in the relative contexts (Jordan and 
Mitchell 2015), it utilizes tools from, among other fields, data mining, statistics, and 
optimization theory (Jordan and Mitchell 2015). 
ML is frequently classified in three types: supervised, unsupervised, and hybrid ML.  
Supervised ML (Jordan and Mitchell 2015) utilizes algorithms that are “trained” and 
validated using labelled datasets, within application domains with a known reasoning.  
ML algorithms “learn” based on real training data, produce certain results, and then, 
after the results’ validation, apply the gained knowledge on new instances (Portugal et 
al., 2018).  Unsupervised ML can be defined as “the analysis of unlabelled data under 
assumptions about structural properties of the data” (Jordan and Mitchell 2015).  In 
unsupervised ML, the system is presented with data about a domain and has to find 
hidden patterns and develop relational models “on its own”, by running internal 
procedures (Portugal et al., 2018).  Counter to supervised ML, there are not pre-set 
assumptions about internals laws in the dataset; rather, unsupervised ML systems are 
supposed to find these.  Hybrid ML involves mixing more than one approaches.  
These may include semi-supervised learning, or reinforcement learning (Jordan and 
Mitchell 2015, Portugal et al., 2018). 
ML can potentially provide powerful data-driven predictive models but is also 
exposed to scepticism on issues of accountability, surveillance, and direct impact on 
humans (e.g. fairness, bias, and discrimination) (Whittaker et al., 2018).  Currently, 
there is difficulty in recognizing the differences in the potential between earlier ML 
applications (i.e. expert systems), and the current systems; this is mainly related to the 
ability of ML systems to process large amounts of data and rules.  However, such 
criticism does not prevent “intelligent machines” from being considered as the new 
means for effective construction management, utilized along knowledge management 
and organizational learning, and combining human learning with computational 
intelligence to solve the related construction planning problems (Zhou et al., 2013). 
This study aims at investigating possible applications of ML for construction 
planning, and especially noting their impact on the responsibility in action-taking, 
accountability in decision-making, and the still crucial need for human reasoning.  
After presenting the research method, a literature review on ML applications in 
construction project planning takes place, and then two particular implementation 
cases are selected for a more in-depth analysis.  In the final two sections of this paper, 
the discussion emanating from the conducted analysis, as well as the relative 
conclusions, are respectively showcased. 
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METHOD 
In the current study, a combination of interpretive sociological and mixed method is 
adopted as a research approach (Bryman and Bell 2011, Creswell and Clark 2011).  
This approach is applied to the literature review and the exposition of the two case 
studies included in the succeeding sections.  The literature review is based on an 
explorative search on current ML applications for construction planning.  Then, the 
two cases presented were chosen from the authors' own work (a master's thesis and a 
PhD) and represent current applications of ML in a construction management context, 
with an emphasis on construction planning as well. 
The example findings are relatively few, but in a targeted manner, since the authors 
chose to mainly present cases with well-defined systems displaying a clear 
methodological and developmental process, and also having reached at least the 
technological maturity stage of prototype.  It should be noted that the literature 
findings both satisfying the aforementioned broad criteria and also regarding 
construction planning more explicitly, are even fewer, with some of them shown in 
Table 1. 
Table 1: Reported machine learning systems within construction planning 

 
The limitations of the present contribution include the selective set of literature, and a 
reduced context appreciation in the two cases.  The first presented case limitations 
include not using the nuanced distinctions highlighted in the data it was built on, and 
rather aiming at making a general comparison between projects.  Moreover, the study 
only covered the Swedish construction market, as the applicability to other contexts 
(i.e. the construction sectors in other countries) was not known.  In addition, cost, time 
and satisfaction were selected and considered as KPIs, and other possible indicators 
are disregarded.  The second presented case limitations stem mainly from the limited, 
if diverse, training and validation dataset.  Furthermore, while it strives for 
generalized results, the diversity of the model inputs may make its particularization in 
distinct construction project types and/or other special conditions cumbersome. 

LITERATURE REVIEW 
Central activities in construction planning is scheduling, optimization and resource 
leveraging.  Zhou et al., (2013) in their review map a series of existing pre-ML 
algorithms and claim that ML algorithms can present an optimal method to learn 
flexibly and automatically from sample data, and suggest that cost, time, risk, and 
quality were considered.  Prayogo et al., (2018) presented an ML application for 
solving the resource leveraging problem in construction projects.  Zhou et al., (2013) 
and Prayogo et al., (2018) underpin a wide potential for use of ML in construction 
planning.  When it comes to presented systems in the literature however, a much more 
limited sample is available at present.  Table 1 juxtaposes four found examples, where 
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only two are within planning in a strict sense.  For each system, its place in the 
building process, number of used algorithms, data source, and technological maturity 
(i.e. is it a research model, prototype or product offered on the market?), is displayed. 
The litigations of site disputes system (Mahfouz and Kandil 2011) aims at reducing 
site disputes through prediction of outcomes.  Mahfouz and Kandil (2011) collected 
federal court data and separated the cases into the ones judged in favour of the client 
and the ones in favour of the contractor.  Then, they deployed four ML algorithms on 
features such as project types and contract clauses and developed a model to predict 
the outcomes of such contractual disputes.  Chi et al., (2012) proposed a system for 
decision support, utilizing data on the degree of utilized technology and cost 
performance in construction projects.  To process this data, they used four different 
ranking algorithms for project work functions.  Then, they chose the highest-ranking 
attributes showcasing the best capability for predicting cost performance (e.g. 
including planning and execution, and project scoping).  Liu et al., (2018) proposed a 
system analysing scaffolding productivity and weather conditions.  Liu et al., (2018) 
claim that the relationship between outdoor ambient environment and construction 
productivity is nonlinear, thus a relative nonlinear model is proposed.  Different 
nonlinear algorithms were used to study the ambient environment contributors on 
scaffolding construction performance factors.  The collected and utilized data included 
performance factors (e.g. total planned hours), and ambient environment features and 
meteorological conditions (e.g. temperature and humidity).   
A combination of meteorological conditions was found to affect the construction 
performance of scaffolding in Darwin Australia.  Won et al., (2018) propose a system 
for locating on-site resources.  The on-site locations of stocked and installed materials 
are sometimes determined by radio frequency identification (RFID) sensors, which are 
inefficient in terms of cost and time in large projects, especially if workers are 
manually carrying RFID radars to investigate tags on materials (Won et al., 2018); 
this way, intensive labour working time is required.  Won et al., (2018) proposed a 
model for the unmanned aerial vehicle UAV-RFID, utilizing algorithms to analyse 
data regarding the received signal strength index (RSSI), or derived by real-time 
kinematic (RTK) GPS and the gyro sensors mounted on the vehicle.  This model was 
considered to be more efficient than previous methods for locating resources in 
outdoor sites, such as RFID, GPS, and ultra-wide band (UWB). 
Summing up, there is a variety of systems and prototype applications of ML within 
the construction context.  The purpose of the development of such systems covered 
various aspects of the construction field, but only a handful of the ML solutions 
related more explicitly to construction planning.  For these systems to be developed, 
different ML algorithms, interfaces, and connected interoperable systems were used.  
The technological maturity of those is generally low (prototype stage), and their 
validation largely utilized internal processes (e.g. cross-validation with instances of 
the training dataset), rather than extensive testing through new cases.  What can be 
underpinned is that while there is a still growing interest and promise in the research 
literature regarding ML applications for construction, more ground has to be covered 
for this interest to transform into actual established knowledge fully integrated within 
the construction context. 
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Cases 
Performance prediction for Swedish construction projects 
Machine learning algorithms were used to extract and analyse project performance 
data from a productivity survey of n = 580 construction projects in Sweden (Koch and 
Lundholm 2018).  This data included answers from 324 main contractor 
representatives and 256 clients, both of whom participated in a questionnaire survey.  
A main ambition of the investigation was to measure productivity as something more 
than just cost per square meter.  Process-related and soft aspects were considered, 
such as disturbances during construction production, and the performance of the 
project organization members (i.e. clients, consultants, contractors, and suppliers).  
The questionnaire included a set of questions that mostly had pre-given categories for 
answers in Likert scales.  Such categories included technical project complexity, 
preparation work, blasting work usage, level of prefabrication, and chosen structural 
engineering technology (e.g. concrete, steel, or timber).  In addition, project 
organization questions were included, such as ones about the clients’ and contractors’ 
evaluation of the consulting engineers, the architect and supplier performance, and the 
level of collaboration throughout projects.  There were also questions where facts and 
figures were demanded, as well as some open questions related to stated definitions 
(e.g. client costs and partnering).  Finally, a few questions were open without stated 
definitions, including ones on satisfaction, disturbances and lessons-learned.  The 
design and operation of data collection was conducted in the autumn of 2014. 
The focus was on four key performance indicators (KPIs): cost, time, and client- and 
contractor satisfaction.  The data was related to several factors, including project 
attributes, external factors, and the project organization.  For the ML analysis and 
modelling of the factors affecting project performance, several algorithmic tools were 
used, with the relative computational processes performed via WEKA (Waikato 
Environment for Knowledge Analysis), a data mining and ML software (Witten et al., 
2016).  In the first part of the modelling, the features of time variance, cost variance 
and satisfaction of the contractor during the pre-construction and construction phases, 
as well as the cost variance and satisfaction of the client during the pre-construction 
and construction phases, were selected.  By this feature selection, the number of input 
variables used to build the prediction model was reduced, and the attributes with the 
most distinctive predictive capability in relation to the output were identified (Witten 
et al., 2016).  Next, an analysis was performed using the selected features, so that the 
prediction model could find the correlation between those features and the level of 
project performance in terms of the four aforementioned KPIs.  The error estimate 
used in this analysis was the root mean square error (standard deviation of residuals), 
namely the root of the square value of the difference between the predicted and the 
actual value (Witten et al., 2016). 
Among other features, project technical complexity, the use of blasting work, and the 
level of prefabrication were recognised as important factors that affect project 
performance within construction planning.  However, despite external factors and 
technical aspects of a building being considered important, the most recurring factors 
behind project performance were human-related (such the role of the client and the 
level of the architect's performance).  The data shows high variation in cost and time 
variance, and the analysis highlights that in extreme cases (which actually constitute a 
minority within the dataset), the performance of projects that show high cost overrun 
or extreme savings is harder to predict. 
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Constructability appraisal through risk source identification and assessment 
The second case of a ML-enabled predictive system for construction planning, 
appraises a project’s constructability through technical project risk source analysis.  
The constituents of this system were developed using both unsupervised ML 
(Kifokeris and Xenidis 2018) and supervised ML (Kifokeris and Xenidis 2019a).  
Constructability can be here understood as the optimal use of construction knowledge 
and experience in planning, design, procurement, and field operations to achieve the 
overall project objectives of time, cost, quality and client satisfaction, and it is an 
integral construction management framework implemented through the initiation, 
execution, and delivery project lifecycle phases (Kifokeris and Xenidis 2019a). 
Firstly, the development of the system encompassed an extensive literature study on 
constructability and technical project risk analysis.  In this review and among other 
findings, the definitional discrepancy regarding the notion of risk, as well as the 
current research trends promoting the use of risk sources (rather than risks themselves) 
for building and construction projects, were identified (Kifokeris and Xenidis 2018).  
Then, this data was used for the derivation of risk sources via unsupervised ML; it was 
extracted from the respective body of literature and was processed with a semantic 
and linguistic clustering algorithm.  This resulted in the identification of 129 general 
technical project risk sources, organized into ten contextual overhead clusters. 
Secondly, the data used for the integration of constructability and construction risk 
analysis via the training and validation of supervised ML, was collected through 
unstructured interviews with experts.  The latter dataset, consisting of constructability 
class- and risk analysis-related data, consisted of 30 civil engineering projects.  These 
included, among others, a biogas power plant (Greece), two bridges (Greece and 
Romania), the expansion of a municipal primary school (Greece), reconstruction of a 
municipal road axis (Greece), sustainable public installations (including a public 
square, Greece), four road infrastructure projects (Estonia), three renewable 
technology projects (Greece and Albania), four municipal electrical lighting projects 
(Greece), and 10 subcontracted projects forming parts of the Midfield Terminal 
megaproject, in the Abu Dhabi Airport.  The supervised ML system that was 
developed utilized a variety of algorithms and auxiliary mathematical and 
programming tools; it linked the previously found 129 risk sources with the risk-
related real data from the latter 30-project dataset, and then correlated the outcome of 
this linking with the constructability class-related data of the 30 projects (Kifokeris 
and Xenidis 2019a).  As a result, and after the simultaneous training and validation of 
the utilized algorithms, a classification scheme able to predict the constructability of a 
construction project when given the values of the identified general risk sources 
affecting it, was produced (Kifokeris and Xenidis 2019a).  Finally, the software 
prototype RISCONA (RIsk Source-based CONstructability Appraisal) was created 
(Kifokeris and Xenidis 2019b), which offered a simple graphical user interface for 
using the predictive model, while the computational supervised ML apparatus is 
running in the background. 

DISCUSSION 
ML has been tested in several activities related to project performance, productivity 
and planning.  The ML literature shows that relative solutions are covering problems 
in scheduling, uncertainties, cost and time planning issues in construction.  Scheduling 
and resource leveraging are urgent issues related to adequate planning of construction 
projects, the schedule optimization (Prayogo et al., 2018, Zhou et al., 2013), and the 
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ranking of project work-related functions (Chi et al., 2012).  The function ranking 
model provides a flexible tool for prioritising work functions, which facilitates the 
decision-making of construction managers by scoring identified key project elements 
and evaluating project management practices (Chi et al., 2012).  ML for the 
localization of resources (Won et al., 2018) and the appraisal of the effect of the 
outdoor ambient environment on the productivity of construction tasks (Liu et al., 
2018) can also offer solutions for construction planning-related issues (such as the 
optimization of task efficiency, and project delivery time and cost); this is due to the 
respective models being related to success factors such as site conditions, follow-up 
and on-site supervision, and productivity during construction.  ML models for 
predicting the litigation of disputes (e.g. related to site conditions) (Mahfouz and 
Kandil 2011), can aid in solving problems related to economic and external factors.  
There is a direct correlation between these factors (also affecting construction project 
performance) and effective construction planning, and the prediction results of the 
former can affect the latter.  Regardless of the advancement of ML models supporting 
construction planning (which influences and is influenced by the level of project 
performance), there are dimensions that still need to be investigated and realized into 
practical solutions for the related problems - such as uncertainties in design (Lu et al., 
2012).  It is also a common point in the literature that there are limitations in 
validating the reliability and efficiency of ML models developed for descriptive and 
predictive purposes within construction planning; there is a need for more diverse 
project outcomes and project management practices to be considered, and for the 
investigation of the user-friendliness of the implemented models (Chi et al., 2012).  In 
problems related to time and cost overruns, aspects of uncertainty regarding the time 
of activities and the acquisition of resources are important for future research studies 
(Prayogo et al., 2018).   
The extraction of more data is also recommended for better model training and 
validation, especially in cases where data were limited on the outset (Won et al., 
2018).  These limitations illustrate that accountability in decision-making is still an 
issue to be addressed in the development of ML models for construction planning.  
The reliance on the quality and quantity of the training and validating data, the relative 
ambiguity in the selection of the related factors that are addressed for each application, 
and elements of uncertainty that are difficult to be considered and/or quantified, may 
result in an unbalanced relationship between the level of informative support that a 
ML model for construction planning can offer to the decision-making construction 
managers, and the actual results that the decisions of those construction managers will 
yield in reality.  The aforementioned issue is also directly related to the responsibility 
accepted by construction managers using ML models for construction planning in 
their action-taking - an issue also illustrated in the aforementioned limitations, but 
drawing more on the scope of practical application, rather the understanding of the 
results of such ML models.   
While empirical knowledge is still the main driving force in construction management 
(even when aided by digitalized tools and techniques such as ML), construction 
managers rely more and more on the automated results of quantitative data- and 
qualitative information-driven systems (Bilal et al., 2016).  However, the past historic 
knowledge, best practices, and lessons-learned from which such systems extract, 
process and utilize data for their training and validation, may in several cases 
approximate the reality of future predictions in a satisfactory manner, but might also 
fall short on providing solutions for unprecedented bottlenecks, difficulties and/or 
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potential disasters.  Over-relying on and being over-confident about the prediction 
results of ML models for construction planning, can lead construction managers to 
shed some of their responsibility for the actions they actually take following their 
decision-making; in addition, such an attitude could also weaken their criterion and 
ability for a quick and out-of-the-box thinking for solving paradoxes and wicked 
problems.   
Such paradoxes and wicked problems may not only be project-specific, but also 
reflect a more generalized situation apparent in the whole organizational structure of 
e.g. a construction firm; there is thus even less room for non-sharp thinking on the 
side of construction managers.  The two cases explored in more detail, illustrate the 
implementation of supervised and unsupervised ML for aspects of construction 
planning, and build on an assumption of generalizability, i.e. that construction project 
success, as well as risk and constructability, can have a relationship of causation (and 
not only correlation) with a set of generic parameters.  However, the mentioned 
limitations in the generalization of the results of the respective models, still hinder the 
full deployment of such generic solutions.  Therefore, future research should focus, 
among others, on the tackling of problems in generalization, validation and user 
interface experience - which will, in turn, address more adequately the issues of 
accountability in decision-making and responsibility in action-taking for construction 
managers.  Expert knowledge is crucial for knowledge inference in ML models within 
construction planning, especially in complex elements associated with the concepts of 
stakeholder collaboration and satisfaction, as well as correlated causes behind project 
efficiency and productivity.  Therefore, and despite the capabilities of ML models in 
providing valuable assistance as auxiliary tools for construction planning, human 
reasoning - driven by targeted education, tacit knowledge, accumulated experience, 
and taking-up of current and future challenges in an emergent manner - should 
continue being cultivated and relied upon.  ML models for construction planning 
should be decision-making helpers, not the decision-makers. 

CONCLUSIONS 
The implementation of machine learning (namely, systems that algorithmically "learn" 
by themselves and form predictive systems based on existing datasets) within the 
construction context, and especially for construction planning, is expected to become 
even more pronounced in the near future, also following the paradigm shift of 
digitalisation in construction.  As construction projects tend to be influenced by 
interrelated issues resulting in cost and/or time overruns and lower performance, there 
has been a continuous attempt to mitigate such issues by developing predictive 
construction planning systems.  ML can offer such a capability.  In this research 
effort, and after a targeted literature review investigating possible applications of ML 
for construction planning, as well as a more detailed exposition of two application and 
development cases, certain deductions and identified limitations led to a discussion 
addressing the issues of responsibility in action-taking, accountability in decision-
making, and the still crucial need for human reasoning when it comes to construction 
managers using such ML systems.  Accountability in decision-making may be 
hindered by the reliance on the quality and quantity of the training and validating data, 
the relative ambiguity in the selection of the related factors that are addressed for each 
application, and elements of uncertainty that are difficult to be considered and/or 
quantified.  Such hindrance can result to an unbalanced relationship between the level 
of support that a ML model can offer to the decision-making construction managers, 
and the actual results that the decisions of those construction managers will yield in 
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reality.  Also, and through a more practical lens, the responsibility accepted by 
construction managers using ML models for construction planning in their action-
taking, can be affected.  Construction managers still rely heavily on their empirical 
knowledge (even when aided by digitalized tools and techniques such as ML), but also 
draw more and more on the automated results of quantitative data- and qualitative 
information-driven systems.  However, such systems, however satisfactory their 
general approximation of the reality of future predictions is, may still fall short on 
providing solutions for unprecedented situations.   
Over-reliance on and being over-confident in the prediction results of ML models for 
construction planning, can lead construction managers to shed some of their 
responsibility for the actions they actually take following their decision-making; in 
addition, their ability for a quick and out-of-the-box thinking for solving paradoxes 
and wicked problems may be weakened.  Furthermore, experience is crucial for 
knowledge inference in ML models within construction planning, especially in 
complex elements associated with the concepts of stakeholder collaboration and 
satisfaction, as well as correlated causes behind project efficiency and productivity; 
the assumption of generalizability of the prediction results is centrally tied to this 
knowledge inference process, as the actual applicability and utility of such 
generalizations can be linked to the reasoning of the construction manager and user of 
the respective ML system.   
As a continuation of the current work, there should be a conduct of research focused 
on tackling problems in generalization, validation and user interface experience - 
which will, in turn, address more adequately the issues of accountability in decision-
making and responsibility in action-taking for construction managers.  In addition, 
empirical research can be conducted, to address the impact of the such issues in 
practice and investigate the interfaces between data-driven methodologies used in the 
training and validation of ML models for construction planning, and the cognitive 
processes followed by construction managers in their reasoning and problem-solving.  
As a general conclusion, it is not enough to include human knowledge inference 
aspects in ML modelling; it is also crucial to strengthen qualified reasoning in the 
decision-making and accountable action-taking for construction project planning. 

REFERENCES 
Bilal, M, Oyedele, L O, Qadir, J, Munir, K, Ajayi, S O, Akinade, O O, Owolabi, H A, Alaka, 

H A and Pasha, M (2016) Big Data in the construction industry: A review of present 
status, opportunities and future trends, Advanced Engineering Informatics, 30(3), 500-
521. 

Bryman, A and Bell, E (2011) Business Research Methods. Oxford: Oxford University Press. 

Chan, A P and Chan, A P (2004) Key performance indicators for measuring construction 
success, Benchmarking: An International Journal, 11(2), 203-221. 

Chi, S, Suk, S J, Kang, Y and Mulva, S P (2012) Development of a data mining-based 
analysis framework for multi-attribute construction project information, Advanced 
Engineering Informatics, 26(3), 574-581. 

Creswell, J W and Clark, V L P (2011) Designing and Conducting Mixed Methods Research 
2nd Edition, Los Angeles: SAGE Publications. 

Forbes, L H and Ahmed, S M (2010) Modern Construction: Lean Project Delivery and 
Integrated Practices. Boca Raton: CRC Press. 



Shayboun, Kifokeris and Koch 

708 

Kaplan, A and Haenlein, M (2019) Siri, Siri in my Hand, who's the Fairest in the Land? On 
the Interpretations, Illustrations and Implications of Artificial Intelligence, Business 
Horizons, 62(1), 15-25. 

Jordan, M I and Mitchell, T M (2015) Machine Learning: Trends, Perspectives and 
Prospects. Science, 349(6245), 255-260. 

Kifokeris, D and Xenidis, Y (2018) Application of linguistic clustering to define sources of 
risk in technical projects, ASCE-ASME Journal of Risk and Uncertainty in 
Engineering Systems, Part A: Civil Engineering, 4(1), 04017031-1 - 04017031-13. 

Kifokeris, D and Xenidis, Y (2019a) Risk source-based constructability appraisal using 
supervised machine learning, Automation in Construction, 104, 341-359. 

Kifokeris, D and Xenidis, Y (2019b) The RISCONA system: Constructability appraisal 
through the identification and assessment of technical project risks sources. In: IABSE 
Symposium Guimarães 2019 Report, Vol 114, Zurich: International Association for 
Bridge and Structural Engineering, 1696-1703. 

Koch, C and Lundholm, M (2018) Produktivitetsläget i svensk byggande 2014: Lokaler, 
Grupphus och Anläggning, Gothenburg: SBUF. 

Liu, X, Song, Y, Yi, W, Wang, X and Zhu, J (2018) Comparing the random forest with the 
generalized additive model to evaluate the impacts of outdoor ambient environmental 
factors on scaffolding construction productivity, Journal of Construction Engineering 
and Management, 144(6), 04018037. 

Lu, P, Chen, S and Zheng, Y (2012) Artificial intelligence in civil engineering, Mathematical 
Problems in Engineering, 1024-123X. 

Mahfouz, T and Kandil, A (2011) Litigation outcome prediction of differing site condition 
disputes through machine learning models, Journal of Computing in Civil 
Engineering, 26(3), 298-308. 

Portugal, I, Alencar, P and Cowan, D (2018) The use of machine learning algorithms in 
recommender systems: A systematic review, Expert Systems with Applications, 97(1), 
205-227. 

Prayogo, D, Cheng, M Y, Wong, F T, Tjandra, D and Tran, D H (2018) Optimization model 
for construction project resource levelling using a novel modified symbiotic 
organisms search, Asian Journal of Civil Engineering, 19, 625-638. 

Wauters, M and Vanhoucke, M (2014) Support vector machine regression for project control 
forecasting, Automation in Construction, 47, 92-106. 

Whittaker, M, Crawford, K, Dobbe, R, Fried, G, Kaziunas, E, Mathur, V, West, S M, 
Richardson, R, Schultz, J and Schwartz, O (2018) AI Now Report 2018, New York: 
New York University. 

Witten, I H, Frank, E, Hall, M A and Pal, C G (2016) Data Mining: Practical Machine 
Learning Tools and Techniques. Burlington, Mass: Morgan Kaufmann. 

Won, D, Park, M W and Chi, S (2018) Construction resource localization based on UAV-
RFID platform using machine learning algorithm. In: 2018 IEEE International 
Conference on Industrial Engineering and Engineering Management, 1086-1090. 

Zhou, J, Love, P E, Wang, X, Teo, K L and Irani, Z (2013) A review of methods and 
algorithms for optimizing construction scheduling, Journal of the Operational 
Research Society, 64(8), 1091-1105.


