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In a previous paper (Kishk, 2004), a practical procedure has been developed to handle 
statistically significant data and expert assessments within the same whole-life costing 
(WLC) model calculation. However, results obtained from this algorithm are typically 
conservative. The objective of the research work that underpins this paper is to further 
investigate this conservative nature. First, various causes of this conservative nature 
are explored and discussed to identify how they can be eliminated. Then, an effective 
WLC model is developed and implemented into a practical algorithm to tackle some 
aspects of this conservative nature. Typical results showed its advantage over 
standard WLC models when dealing with normalized data. First, the model saves the 
time of preparing the data in the standard format. Secondly, and more importantly, the 
confidence measures in ranking can be better because of the elimination of the 
additional uncertainty in the predicted WLCs that may be caused by expanding 
normalised data to the standard format. 
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INTRODUCTION 
When whole-life costing is as a decision making tool, an explicit mathematical model 
is usually employed to calculate the net present value (NPV) of all future costs and 
benefits of each competing alternative. Then, the choice criterion is that the ideal 
alternative has the minimum NPV. Because the technique, by definition, deals with 
the future and the future is unknown, it is crucial to identify effective methods that can 
recover the information that is present in this uncertain data and assess the faith that 
can be placed on this information and consequently good and reliable decisions can be 
made. In doing so, either a probabilistic risk assessment technique, usually the Monte 
Carlo simulation (MCS), or technique based on the fuzzy set theory (FST) is 
employed. 

MCS has been used in handling uncertainty in WLC data by many authors, e.g. 
Flanagan et al. (1989), Smith (1994), and Goumas et al. (1999). In an MCS exercise, 
every uncertain variable is represented by a probability distribution function (PDF). 
The resulting whole-life costs become random variables represented by PDFs. As 
noted by Flanagan et al. (1989), this provides the decision-maker with a wider view in 
the final choice between alternatives but will not remove the need for the decision-
maker to apply judgment and there will be, inevitably, a degree of subjectivity in this 
judgment. Moreover, simulation techniques have been criticized for their complexity 
and their expense in terms of computation time and expertise required to extract the 
knowledge (Byrne, 1997; Edward and Bowen, 1998). 
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Because mathematical concepts and operations within the framework of FST are 
much simpler and more effective than those within the probability theory, it has been 
employed by several researchers to handle uncertainty in WLC studies. In this 
approach, uncertain variables are represented by fuzzy numbers (FNs) and the 
resulting whole-life costs become FNs as well. Sobanjo (1999) employed an 
approximate method proposed by Kaufmann and Gupta (1988) to manipulate fuzzy 
numbers in WLC calculations. However, Sobanjo’s model can deal only with 
uncertainty in cost variables. Besides, only triangular fuzzy numbers can be used. 
Moreover, it cannot handle random uncertainties in statistically significant data. The 
algorithm developed by Kishk and Al-Hajj (2000) tackled the first two shortcomings.  

Recently (Kishk, 2004), another algorithm has been developed to deal with various 
facets of uncertainty in statistically significant data and expert assessments within the 
same whole-life costing (WLC) model calculation. This allowed comparison between 
fuzzy and probabilistic approaches to handle uncertainties in WLC modeling. Typical 
results showed that fuzzy algorithms are more conservative. 

The rest of the paper is organised as follows. In the next section, various sources of 
the conservative nature of fuzzy arithmetic are discussed. Then, various published 
WLC models are critically reviewed to identify desirable features to be used in the 
intended model. Next, the model is derived and implemented into a computational 
algorithm. This is followed by solving two example problems to explain its efficacy 
and applicability. Finally, the research work is summarised and directions for further 
research are introduced. 

CAUSES OF THE FUZZY CONSERVATIVE NATURE 
Three related sources for this conservative nature results can be identified. First, all 
possible combinations of parameter values are considered in fuzzy calculations; while 
scenarios that combine low probability values in MCS have all the less chance of 
being randomly selected (Guyonnet et al., 1999). This results in a worst-case scenario, 
which may be a disadvantage in cases where knowledge of correlations among 
uncertainties could be used to tighten the bounds on uncertainty (Ferson et al., 1997). 

Secondly, the procedures used to implement fuzzy calculations may have an effect. 
Almost all these procedures are based on interval arithmetic which may result in not 
only the natural uncertainties, which are directly induced by the uncertainties in the 
model parameters, but also additional, artificial uncertainties due to the effect of 
overestimation of interval operations. This effect results from the treatment of fuzzy 
numbers representing uncertain input parameters as independent numbers, which is 
not always the case. To tackle or reduce this effect, several approaches have been 
proposed (e.g. Dong and Shah, 1987; Hanss, 2002). In the vertex method (Dong and 
Shah, 1987), the α-cut concept is employed to discretise a fuzzy number into a 
number of level sets or intervals. At each level, 2n evaluations are carried out for an n-
dimensional function. The transformation method proposed by Hanss (2002) may be 
considered as an extended version of the vertex method. 

The third source of fuzzy conservatism is the dependency of standard fuzzy arithmetic 
on what are represented by the fuzzy numbers involved in contrary to arithmetic 
operations on real numbers that follow unique rules. Klir (1997) showed how standard 
fuzzy arithmetic does not take into account constraints imposed by the meaning of 
variables. When these constraints, referred to as requisite constraints are neglected the 
obtained results are less precise than necessary. This is because these constraints 



Fuzzy whole-life cost simulations 

 731

represent additional information that should be taken into account. For example, when 
a variable is known to always equal another variable, an ‘equality constraint’ should 
be imposed on standard interval equations because that variable cannot have 
simultaneously two distinct values. Another constraint is when a variable is known to 
equal a ratio (crisp or fuzzy) of another variable. These situations may occur in WLC 
modelling when follow-on costs of competing alternatives are represented as ratios of 
their initial costs. Obviously, these constraints may easily be imposed by the vertex 
method if the WLC mathematical model is reformulated to suit a specific problem of 
interest. A more practical solution is to derive WLC models that can effectively 
handle these ‘normalised costs’ without the need to reformulate the model at each 
application. The objective of the research work underpinning this paper is to develop 
such a model and to assess its ability to reduce the artificial uncertainties in the 
calculated whole-life costs.  

A NORMALISED WLC MODEL 
Due to its desired features, a normalized version of the NPV model proposed by Kishk 
and Al-Hajj (2000) will be developed.  
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where ikC  are non-annual recurring costs, and ikPWN  are their present worth factors 
given by 
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The numbers of occurrences of non-annual recurring costs, ikn , are a function of both 
the analysis period and the frequencies of these costs as follows 
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This model may be rewritten as 
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where iikijim VASCAF  and  , ,  are normalised variables given by 

imimi FFI =⋅0                                                                    (5a) 

ijiji AAI =⋅0                                                                      (5b) 

ikiki CCI =⋅0                                                                     (5c) 

iii VASVASI =⋅0                                                              (5d) 

In a similar fashion, a normalised net present value, iVPN , may be defined as 
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iii NPVVPNI =⋅0                                                             (6) 

Comparing equations (4) and (5), iVPN  can be obtained as 
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This normalised value may be seen as an amplification factor applied to the initial cost 
of an alternative to obtain the whole-life cycle costs of that alternative. Despite this 
appealing interpretation, iVPN  can’t be used directly to rank alternatives. Rather, it 
should be modified such that the reference cost is the same for all alternatives. One 
way to do so is to choose the initial cost for alternative 1, 01I . Define a normalised 

initial cost factor in relation to 01I , iÎ , as 

ii III 001
ˆ =⋅                                                             (8) 

Similarly, define a normalised net present value in relation to 01I , iVPN ˆ , as 

ii NPVVPNI =⋅ ˆ
01                                                          (9) 

Substituting from equations (8 and 9) in equation (6) and simplifying, yields  

iii VPNIVPN ⋅= ˆˆ                                                          (10) 

Substituting from equations (10) in equation (7) and simplifying, iVPN ˆ  can be 
expressed as 
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The model has been implemented into a computer algorithm using the MATLAB® 
programming environment (The MathWorks, 2000).  

CASE STUDIES 
In this section, two example cases are solved using the proposed model to illustrate its 
effect in improving the conservative nature of WLC fuzzy simulation. 

Case (1) 
A construction firm is considering the purchase of a high-technology equipment. Two 
systems A and B have been identified and it is required to determine the best system 
for a discount rate of 4%. The low, best and high estimates of the initial cost of system 
A are £90,000, £100,000 and £110,000, respectively, with annual running and 
maintenance costs ranging from 10 to 12% of the initial cost. On the other hand, the 
initial cost of system B is as twice as that of system A with annual running and 
maintenance costs ranging from 2% to 3% of its initial costs. The life of either system 
is 12 years with a negligible salvage value. Figure 1 shows the membership functions 
(MFs) of cost data in a normalised format.  
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Figure 1: Normalized cost data for case (1) 
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Figure 2: Cost data for case (1) 
 

Cost data have also been calculated in a standard format (figure 2) so that the standard 
NPV model can be used. Figure 3 depicts the resulting NPVs of the competing 
alternatives in this case. As expected, these MFs are trapezoidal because all cost data 
are either triangular or trapezoidal and the discount rate and analysis period are 
certain. The removals for alternatives A and B, marked with down arrows in figure 3, 
are £203,705 and £247,395, respectively. The confidence measures in this ranking are 
summarised in Table 1. The uncertainty measures for various discounted cost items 
have been also calculated as shown in Table 2. As shown, all cost items contributed to 
the fuzziness of the resulting NPVs. 

Because data are normalised, the normalised NPV model can be used directly to solve 
this example problem. Figure (4) depicts the resulting normalised NPVs of the 
competing alternatives. As shown, these MFs are rectangular. The removals for 
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alternatives A and B, marked with down arrows in figure (4), are 2.032 and 2.469, 
respectively. The confidence measures in this ranking were also calculated and are 
summarised in Table (3). These results reveal that alternative A has an absolute 
advantage over alternative B.  
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Figure 3: Net Present Values of competing alternatives (case 1). 
 
Table 1: Measures of confidence in ranking using the NPV model 

Alternative A Alternative B Rank Alternatives 
CI1 CI2 CI1 CI2 

1 Alternative A --- --- 0.891 0.946 
2 Alternative B 0.000 0.054 --- --- 
 
 
Table 2: Measures of uncertainty of present values of various costs 

Alternative A Alternative B Cost items U F U F 
Initial cost 2.197  10.000 2.807 20.000 
Annual costs 3.384 10.324 3.191 4.693 
 
 
Table 3: Measures of confidence in ranking using the normalized model 

Alternative A Alternative B Rank Alternatives CI1 CI2 CI1 CI2 
1 Alternative A --- --- 1.000 1.000 
2 Alternative B 0.000 0.000 --- --- 
 
 
This superior performance of the normalised NPV algorithm over the standard NPV 
algorithm can be attributed to the elimination of fuzziness in cost data through the 
normalisation process as shown in figure 2 where all normalised input data are 
represented by spikes and trapezoidal MFs. Thus, there is no fuzziness of all NPV 
contributions as shown in Table (4). Another unique feature of the normalised model 
can be noticed. Both the non-specificity and fuzziness measures of the initial cost of 
alternative B are also zero. This point is further discussed in the next subsection. 
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Figure 4: Normalised net present values of competing alternatives (case 1). 
 
Table 4 Measures of uncertainty of normalised present values of various costs 

Alternative A Alternative B Cost items 
(discounted & normalised) U F U F 
Initial cost 0.000 0.000 0.000 0.000 
Annual costs 0.172 0.000 0.172 0.000 

 

Case (2) 
The effect of using fuzzy normalised data on the performance of the normalised model 
is investigated in this section. The new normalised data are shown in figure (5) and all 
other data are the same as in case study 1. The NPV algorithm (Kishk and Al-Hajj, 
2000) was employed to solve this example problem. Figure (6) depicts the resulting 
NPVs of the competing alternatives. The removals for alternatives A and B are 
£218,174 and £231,7055, respectively, indicating that alternative A outranks 
alternative B. The confidence measures in this ranking are summarised in Table (5). 
As expected, these measures are smaller than those in the non-fuzzy case (Table 1). 
Table 5: Measures of confidence in ranking using the NPV model (case 2) 

Alternative A Alternative B Rank Alternatives CI1 CI2 CI1 CI2 
1 Alternative A --- --- 0.252 0.596 
2 Alternative B 0.060 0.404 --- --- 
 

The uncertainty measures for present worth contributions of various cost items have 
been also calculated and are shown in Table (6). Obviously, the uncertainty measures 
of the initial costs of alternative A are the same as in the non-fuzzy case (Table 2). 
However, all other cost items contributed more fuzziness to the resulting NPVs than in 
the non-fuzzy case (Table 2). This illustrates the lower confidence measures obtained.  
Table 6: Measures of uncertainty of present worths of various costs (case 2) 

Alternative A Alternative B Cost items U F U F 
Initial cost 2.197  10.000 3.741 53.500 
Annual costs 3.596 30.502 3.127 27.692 
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Figure 5: Normalised cost data for case (2) 
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Figure 6: Net Present Values of competing  alternatives ( case 2) 
 
The normalised NPV algorithm was also employed to solve this example problem. 
Figure (7) depicts the resulting normalised NPVs of the competing alternatives. The 
removals for alternatives A and B, marked with down arrows in figure 7, are 2.173 
and 2.297, respectively, indicating again that alternative A outranks alternative B. The 
confidence measures in this ranking were also calculated and are summarised in table 
(7). As expected, these measures are smaller than those in the non-fuzzy case (table 
4). However, they are higher than those obtained by the NPV algorithm. This indicates 
again the superiority of the normalised model over the standard NPV model. 
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Figure 7: Normalized Net Present Values of alternatives of case (2) 
 
 
Table 7: Measures of confidence using the normalised NPV model (case 2)  

Alternative A Alternative B Rank Alternatives CI1 CI2 CI1 CI2 
1 Alternative A --- --- 0.353 0.627 
2 Alternative B 0.098 0.373 --- --- 
 
The uncertainty measures for various discounted cost items have been also calculated 
and are shown in Table (8). As shown, all normalised cost items contributed more 
fuzziness to the resulting NPVs than in the non-fuzzy case (Table 4). However, the 
uncertainty measures of the initial costs of alternative A (used in the normalisation 
process) are still zero. This illustrates again that the superiority of the proposed model 
is due to the elimination of expanding normalised ratios to the standard format. 
Table 8: Measures of uncertainty of normalized present values of various costs (case 2) 

Alternative A Alternative B Cost items U F U F 
Initial cost 0.000 0.000 0.289 0.350 
Annual costs 0.245 0.188 0.212 0.239 
 

CONCLUSIONS AND THE WAY FORWARD 
Results obtained from fuzzy WLC models are more conservative than probabilistic 
counterparts. The main cause of this conservative nature is that standard fuzzy 
arithmetic ignores existing correlations among input uncertainties. Besides, its 
dependency on what are represented by the fuzzy numbers involved. These situations 
may occur in WLC modelling when follow-on costs of competing alternatives are 
represented as ratios of their initial costs. 

To deal with these situations, a novel normalized WLC model has been derived such 
that uncertainty of all input variables can be effectively modelled. Besides, the 
resulting whole-life costs are ratios of initial costs with a clear interpretation. The 
applicability of the model has been illustrated in the context of two example 
applications. Typical results showed its advantage over the standard NPV model when 
dealing with normalized data. First, the model saves the time of preparing the data in 
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the standard format. Secondly, and more importantly, the confidence measures in 
ranking can be better because of the elimination of the additional uncertainty in the 
predicted WLCs that may be caused by expanding normalised data to the standard 
format.  

Handling the conservative nature of fuzzy simulations of statistically significant data 
represented by probability distribution functions is being investigated and will be 
reported in a future paper. 
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