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With the advance of technology, construction projects have become increasingly 
complex and dynamic. Risk assessment, therefore, is normally a process of decision 
making conducted by multiple experts in a vague and fuzzy environment. It should be 
noted that background and contribution of the experts to the subject under 
consideration would differ from one another. However, preferences of experts do not 
have to be in conflict. The decision to be made by a group is highly dependent on the 
way of interaction and the type of aggregation to individuals. Therefore, risk analysts 
are required to capture the underlying subjective preferences to reach a decision value 
upon a reliable analysis. In order to facilitate the handling of uncertainty and 
subjectivity associated with projects and expert judgements, a multi-expert decision 
making methodology based on fuzzy set theory is proposed. The methodology utilizes 
a fuzzy aggregation system in which an appropriate control action can be determined 
by the acquisition and examination of individual expert judgements. This paper 
describes the principal issues of multi-expert judgement based on fuzzy reasoning 
decision making approaches in construction project risk analysis. A risk analysis 
model based on fuzzy set theory is presented to facilitate the decision making 
involving multiple experts under a vague and subjective circumstance. An illustrative 
example is also presented to demonstrate the proposed risk analysis model.  

Keywords: Fuzzy set theory, multi-expert judgement, decision making, risk 
assessment. 

INTRODUCTION 
Construction project risk assessment is normally a process of decision making 
conducted by multiple experts upon the available knowledge and information (An et 
al 2005; Zeng et al 2004). It is important that the involved experts have the right 
experience, skills and expertise and ideally the aspect of compatibility. Chapman 
(1998) declared that a balanced and effective group is normally formed by a particular 
combination of personality traits.  

Accidences arise due to multiple root causes: incomplete design, poor communication, 
inadequate supervision, defective materials and improper construction techniques 
(HSE 2003a). In terms of a particular hazard, however, risk magnitude highly depends 
on many factors, such as the type and scope of the project, the qualification and 
experience of the contractor, adopted construction  programme, site conditions, safety 
behaviour and safety performance of the construction workforce. In practice, statistic 
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data obtained from the past only reflect a general image of the risk and the analysis of 
various factors involves substantial uncertainty and subjectivity. The nature of 
construction projects has undermined the applicability of many traditional risk 
assessment techniques which are widely used in the UK.  

This paper presents a new risk analysis model based on fuzzy set theory to facilitate 
the decision making involving multiple experts in a vague and fuzzy environment. A 
case study has been used to illustrate the application of the methodology. 

THE PROPOSED MULTI-EXPERT DECISION MAKING MODEL 
In a multi-expert decision making system, an expert is not against problems and 
making the decision alone. He/She interacts with other experts to create a cooperated 
solution in which the wisdom of participated experts is assembled and the best 
decision is presented. Experts in a risk assessment group are viewed as a single 
decision maker and decision can only be made by the group not by the individual 
experts. Therefore, individual preferences do not have to be in conflict and the 
primary concern of decision making is to aggregate individual preferences made by 
each expert to a group preference.  

In order to facilitate the handling of uncertainty and subjectivity associated with 
construction projects and expert judgements, a multi-expert decision making 
methodology based on fuzzy set theory is proposed and shown in Figure 1. The new 
fuzzy model algorithm is developed in four main stages and a general description of 
the model is given in the following sections. 

Measure risk parameters  by multiple experts

Convert preferences into STFNs Aggregate individual STFNs into
group STFNs

Fuzzy inference Defuzzification

Risk magnitude

Determine fuzzy membership function

Output modification

Determine risk parameters and risk criteria

Fuzzy
aggregation

stage

Fuzzy
inference

stage

Allocate CFs to
experts

Analyse weighting
data

Is the reliable result obtained?

Convert the group
STFNs into fuzzy

sets

Preliminary
stage

Yes

No

Establish a risk assessment group
with multiple experts

 
Figure 1. The fuzzy-based multi-expert decision making model 

1. The preliminary stage 
Risk assessment starts upon the completion of risk identification, in which all 
potential hazards have been identified and classified into different categories. In the 
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preliminary stage, a risk assessment group is form by experts with essential 
experience and expertise in connection with the risk.  

1.1 Contribution factors (CFs) 

In order to distinguish the competence among experts, contribution factor (CF) is 
introduced to the fuzzy model. CF is determined by the analysis of experts’ skills, 
experience and expertise to the risk under consideration. Assume an expert Ei, 

ni ,...,2,1= , is assigned a contribution factor ci, where ]1,0[∈ic , ni ,...,2,1= and 
1...21 =+++ nccc . 

1.2 Risk parameters and risk criteria 

Some risk parameters are used widely in judging risk magnitude, such as risk 
likelihood, risk severity, risk timing, detectability and consequence possibility. 
However, risk likelihood and risk severity are frequently used as two fundamental 
parameters for risk assessment. 

Risk criteria are standards which define the scope and the context of risk magnitude 
and risk parameters.  They may be different according to the change of time, project, 
stakeholder and internal and external circumstances. The risk parameters and risk 
criteria should be properly defined before the assessment taking place. 

1.3 Fuzzy membership functions 

Risk analysts are required to determine the fuzzy membership functions of risk 
magnitude and the chosen risk parameters. Fuzzy membership function usually stems 
from experimental data, perception of the linguistic terms and the simulation of 
reality. Besides, it should characterize the defined linguistic variables and be 
accommodated to the environment under consideration. In literature, several 
geometric mapping functions have been widely adopted, such as triangular-shaped 
function, trapezoidal-shaped function and S-shaped function.  

2. The fuzzy aggregation stage 

2.1 The standardised trapezoidal fuzzy number (STFN) 

Experts within the risk assessment group are required to provide their evaluations to 
the chosen risk parameters under the defined criteria and domain. According to the 
nature of the risk and the availability of information and knowledge, each expert’s 
preference can be a precise numerical value, a range of numerical values, a linguistic 
term, and a fuzzy number etc.  

Normally, if adequate information is obtained and the risk parameter is quantitative 
measurable, an expert probably provides a precise numerical value or a probable range 
of numerical values as his/her preference. However, in most cases, experts find that it 
is hard to give numerical values due the involvement of uncertainty or the risk 
parameter is quantitative immeasurable, then a linguistic term or a fuzzy number can 
be used in the proposed fuzzy model. For example, “the risk likelihood is medium”, 
“the risk severity is about high with 70% confidence” and “the risk likelihood is 
around 5 to 8 and most likely to be 7 in the universe of [0,10]”.  

All these numerical or fuzzy data can be converted to standardised trapezoidal fuzzy 
numbers (STFNs) which are relatively easy and intuitive to use by decision makers. 
STFNs act as a medium for representing experts’ preferences and group preference. 
The STFN of parameter j measured by expert iE  can be defined by a quadruplet 
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Figure 2. Membership function of the STFN 
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In this case, experts build a series of STFNs corresponding to the chosen risk 
parameters. Every STFN represents a preference which is provided by an expert based 
on the available information and his/her subjective judgement. 

2.2 Aggregation of individual preferences 

The aim of aggregation is to combine or reconcile individual preferences to a group 
preference so that a control action is determined. The aggregation can be obtained by 
applying the fuzzy weighted trapezoidal averaging operator.  The process is defined 
as: 

njnjjaggj RPcRPcRPcRP ⊗⊗⊕⊗= ...* 2211                                                           (2) 

where aggjRP * is the fuzzy aggregated result, i.e. the group preference of 
parameter jRP ; njjj RPRPRP ,...,, 21  are the STFNs of parameter j measured by expert 

nEEE ,...,, 21 , respectively; ⊗  and ⊕  stand for the fuzzy multiplication operator and 
the fuzzy addition operator, respectively. 1c , 2c ,…, and nc  are CFs allocated to 
experts, where 1c  assigned to 1E ,  2c  assigned to 2E   and so on.  1...21 =+++ nccc . 

Through the fuzzy aggregation stage, different forms of individual preferences 
provided by experts have been converted into STFNs and aggregated into group 
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preferences with each parameter assigned a distinct STFN which adequately 
represents the evaluation made by multiple experts. 

3. The fuzzy inference stage 
In the fuzzy inference stage, risk analysts input the STFNs into the fuzzy inference 
system, decide the extent to which rules relevant to the current situation, then 
calculate the fuzzy output of risk magnitude RM* by using the information stored in 
the rule base and defuzzify the fuzzy result into a matching numerical value which 
adequately represents RM*. 

3.1 Convert the STFNs into matching fuzzy sets for fuzzy inference 

The aggregated STFNs are not always can be directly used in a fuzzy inference 
system, for example, the rules stored in the rule base are constructed by linguistic 
terms and STFNs are presented in numerical values. In this case, risk analysts are 
required to convert the STFNs into matching fuzzy sets which are favourable to the 
fuzzy inference system. There are several methods in conducting this conversion 
available in literature.  One easy way is taking intersections between the STFN and 
the membership function of the corresponding risk parameter. An example of this 
method is shown in the case study.  

3.2 Fuzzy inference 

A risk is measured by the composition of certain risk parameters, such as risk 
likelihood, risk severity and risk timing (An et al 2005; Zeng et al 2004; HSE 2003b). 
The fuzzy inference system provides an effective method to deal with imprecise and 
vague information associated with construction risks (Sousa and Kaymak 2002; Pillay 
and Wang 2003). In this system, expert judgements and heuristic knowledge are 
captured and stored in the knowledge base. Relations between risk parameters and risk 
magnitude are interpreted in a form of if-then rules.  

Assume that the inference system has m inputs *1RP , *2RP ,…, *mRP  and one output 
RM*. The if-then rules can be written as: 

kR :  If *1RP  is kA1 and *2RP  is kA2 and …and *mRP  is k
mA then RM* is kB    (3) 

where kA1 , kA2 ,…, k
mA , and kB  denote membership functions of risk parameter 

*1RP , *2RP ,…, *mRP , and risk magnitude RM*, respectively; kR , k=1,2,…,K is the 
kth rule stored in the rule base. The fuzzy inference system thus generates a mapping 
between antecedent - risk parameter *1RP , *2RP ,…, *mRP  and consequence - risk 
magnitude RM*. 

Implication operation is applied between antecedent and consequent. Under 
Mamdani’s minimum operator, a fuzzy rule for risk inference can be represented by 
the membership function as follows:  

Kkyxxxy k
RMm

k
RP

k
RP

k
RPR m

k ,...,2,1),()(...)()(),( 21 21
=∧∧∧∧= µµµµχµ         (4) 

where 11 Xx ∈ , 22 Xx ∈ ,…, mm Xx ∈ , mXXX ×××∈ ...21χ and Uy∈ . X1, X2, …, mX , 
U denote the universe of *1RP , *2RP ,…, *mRP  and RM*, respectively. The total 
fuzzy relation R can be found by aggregating each fuzzy relation. For example, since a 
Mamdani’s minimum operator is used in Eq. (4) for interpreting kR , now the 



Zeng, An and Chan 
 

 846

maximum operator taking the union of individual rules can be used to obtain the total 
relation given by the membership function as follows: 

*),(*),(
1

RMxRRMxR k
K

k=
∨=µ                                                            (5) 

There are two principal methods of inference in fuzzy systems: the min-max method 
and the fuzzy additive method (Cox 1999). The fuzzy output RM* is found by 
composing the fuzzy input RP* with the total relation that is described by the fuzzy 
rules. Given fuzzy input RP*, the fuzzy output RM* is  

),(** yxRRPRM o=                                                           (6) 

where symbol “ o ” denotes the compositional operation of fuzzy sets.  

3.3 Defuzzification 

A numerical value of risk magnitude is required in many cases. Since the output of the 
fuzzy inference system is a fuzzy set, defuzzification is used for converting the fuzzy 
result into a matching numerical value that can adequately represent RM*. The well 
developed defuzzification techniques include centre of gravity (COG), centre-average 
and mean of maximum. 

Centre-average is a proven simple and plausible approach frequently used for 
defuzzification. Assume the fuzzy output obtained from the fuzzy inference system is 

}{ ]1,0[,|)(,(* ∈∈= RMRM UyyyRM µµ with p fuzzy term sets, the matching crisp 
value RM can be obtained as follows: 
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where pi ,...,2,1= . iY denotes the centre of the fuzzy term set i of *RM , and 
)( iRM yµ denotes the membership function of the fuzzy term set i of *RM . 

4. The output modification stage 
One should notes that there are a number of techniques available for fuzzy 
aggregation, fuzzy inference and defuzzification. In terms of a particular case, change 
of operator sometimes results in a substantially different decision value. Moreover, 
output modification is also necessary in some situations for securing a reliable 
decision, for instance,  the circumstances of risks have been changed, the output risk 
magnitude falls into a dilemma, such as with a belief of 50% for tolerable and with a 
belief of 50% for intolerable. In this case, Experts and risk analysts should gather 
more information and evidences related to the risk, review the risk assessment process 
and modify the risk parameter or/and risk criteria to reach a reliable decision. 

Through the application of the proposed fuzzy-based risk assessment methodology, 
the defined risk can be carefully assessed and risk magnitude is determined. The final 
result provides the project management team with reliable data for risk respond 
decision making.  

AN ILLUSTRATIVE EXAMPLE 
A risk management project team is formed to manage risks arising in the demolition 
of a commercial building. Demolition is regarded as a dangerous and detrimental 
activity and the risk of fire is now required to assess.  
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Many causes can lead to a fire while demolition taking place, such as electrical faults, 
rubbish burning out of control, heaters of all kinds, misoperation of storage and use of 
flammable materials (King and Hudson 1985). However, in terms of a particular 
demolition, many factors can influence the risk magnitude of fire, such as the age and 
condition of the building, the details and location of public services, the adopted 
demolition method and equipment, the qualification and experience of demolition 
workers. Since there are no adequate practical data and information to support a 
traditional risk analysis, the proposed fuzzy-based risk assessment methodology is 
employed to facilitate the decision making upon the underlying uncertainties.  

The application of the proposed methodology consists of four stages and can be 
described as follows. 

1. The preliminary stage 
Five experts with high qualification regarding this subject are selected to form a risk 
assessment group for undertaking the risk assessment by using the proposed fuzzy-
based risk assessment methodology. According to the analysis of their individual 
backgrounds, a contribution factor (CF) is assigned to each expert as shown in Table 
1. 
Table 1 Assigned contribution factor of experts 

Experts Background Contribution factor 

E1 Safety manager 0.24 
E2 Construction manager 0.23 
E3 Senior engineer 0.20 
E4 Site engineer with 20 years experience 0.18 
E5 Site engineer with 8 years experience 0.15 

Risk likelihood (RL) and risk severity (RS) are chosen as two parameters for assessing 
the risk magnitude (RM) of fire while demolition of the commercial building. Five 
experts agree that five levels of linguistic variables are used for the expression of RL 
and RS: very low (VL), low (L), medium (M), high (H) and very high (VH). On the 
other hand, risk magnitude (RM) is expressed in three levels: negligible (N), tolerable 
(T) and intolerable (I). The risk assessment group agrees to describe the linguistic 
terms of RL, RS and RM as shown in Table 2, 3 and 4, respectively. 
Table 2  Risk Likelihood (RL) 
Description General interpretation Occurrence rate 
Very low Occurrence is unlikely Below 10-9 
Low Occasionally happen  10-7to 10-9 
Medium Likely to happen 10-5 to 10-7 
High Frequently happen 10-3 to 10-5 
Vary high Occurrence is almost inevitable 10-0 to 10-3 

Table 3  Risk Severity (RS)  
Description General interpretation 
Very low Fire damage is ignorable. 
Low Single minor injury, likely business loss within ￡10,000. 
Medium Single major injury or multiple minor injuries, likely business loss 

￡10,001-100,000. 
High Single fatality or multiple major injuries, likely business loss ￡100,001-

500,000. 
Very high Multiple fatality or a number of major injuries, likely business loss greater 

than ￡500,000. 

Table 4  Risk Magnitude (RM) 
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Description General interpretation 
Negligible The risk is low or insignificant and can be readily controlled. 
Tolerable The risk is medium and is tolerable in order to secure certain benefits. 

However, risk controls should be undertaken if it is reasonably practicable 
to do so.  

Intolerable The risk is unacceptable no matter what benefits associated with that risk. 
Proper action must be taken to eliminate or reduce the risk.  

RL and RS are interpreted in triangular membership functions as shown in Figure 3 
(adapted from Carr and Tah, 2001), where very low (VL) = (0,0,3), low (L) = (1,3,5), 
medium (M) = (3,5,7), high (H) = (5,7,9) and  very high (VH) = (7,10,10). On the other 
hand, trapezoidal membership functions are introduced to RM as shown in Figure 4. 
The corresponding trapezoidal numbers are negligible (N) = (0,0,1,4), tolerable (T) = 
(1,4,6,9) and intolerable (I) = (6,9,10,10). 

    
Figure 3. Fuzzy definition of RL and RS                   Figure 4.  Fuzzy definition of RM 

 

Five experts in the risk assessment group are now requested to give their evaluations 
to RL and RS under the defined criteria and score system, i.e. from 0 to 10, inclusive. 
Each expert can provide a precise numerical value, a probable range of numerical 
values, a linguistic term, or a fuzzy number subject to his/her knowledge and the 
available information in hand. Then these evaluations are converted into STFNs as 
defined in Eq. (1). In this case study, Expert E1 and E4 use linguistic terms, E2 uses a 
precise numerical value, E3 uses a range while E5 provides a triangular fuzzy number 
containing three estimated values, namely the optimistic value, the most likely value 
and the pessimistic value as shown in Table 5.  
Table 5  Evaluations and STFNs of RL and RS 

Evaluation 
RL RS Experts 
Preference Converted STFN Preference Converted STFN 

E1 Medium (3,5,5,7) High (5,7,7,9) 
E2 4.5 (4.5,4.5,4.5,4.5) 7.0 (7.0,7.0,7.0,7.0) 
E3 (3,5) (3,3,5,5) (6,8) (6,6,8,8) 
E4 About 4 (3,4,4,5) About 7.5 (6.5,7.5,7.5,8.5) 
E5 (2,4,5) (2,4,4,5) (6,8,9) (6,8,8,9) 

 

2. The fuzzy aggregation stage 
The fuzzy weighted trapezoidal averaging operator is chosen for the fuzzy multi-
expert decision making. According to the Eq. (2), the aggregation process is shown in 
Table 6. 

Consequently, the aggregated STFNs are: 

RL* = (3.195, 4.155, 4.555, 5.365), RS* = (6.080, 7.040, 7.440, 8.250). 



fuzzy reasoning decision making for project risk analysis 

  849

Table 6 Fuzzy aggregation 
Risk parameter Fuzzy aggregation 

al:   µ (x) = 3×0.24+4.5×0.23+3×0.20+3×0.18+2×0.15 = 3.195 
am:  µ (x) = 5×0.24+4.5×0.23+3×0.20+4×0.18+4×0.15 = 4.155 
an:   µ (x) = 5×0.24+4.5×0.23+5×0.20+4×0.18+4×0.15 = 4.555 

RL 

au:   µ (x) = 7×0.24+4.5×0.23+5×0.20+5×0.18+5×0.15 = 5.365 
al:   µ (x) = 5×0.24+7.0×0.23+6×0.20+6.5×0.18+6×0.15 = 6.080 
am:  µ (x) = 7×0.24+7.0×0.23+6×0.20+7.5×0.18+8×0.15 = 7.040 
an:   µ (x) = 7×0.24+7.0×0.23+8×0.20+7.5×0.18+8×0.15 = 7.440 

RS 

Au:  µ (x) = 9×0.24+7.0×0.23+8×0.20+8.5×0.18+9×0.15 = 8.250 

3. The fuzzy inference stage 
Since the aggregated STFNs are not presented in the form of linguistic variables 
stored in the rule base, risk analysts therefore are required to convert them into 
matching fuzzy sets which are favourable to the fuzzy inference system. One easy way 
is taking the intersections between the STFN and the membership function of the 
corresponding parameter. For example, the aggregated STFN of risk likelihood is RL* 
= (3.195, 4.155, 4.555, 5.365) as shown in Figure 5 (the thick segments), then the 

matching fuzzy set 
∧

RL * is obtained by taking the intersections between the STFN and 
the fuzzy term sets of RL*, i.e. 
∧

RL * = {(low, 0.610), (medium, 0.842), (high, 0.130)}     

It is noted that (medium, 0.188) is included into (medium, 0.842). Likewise, one can 

obtain the matching fuzzy set of risk severity 
∧

RS as 
∧

RS * = { (medium, 0.311), (high, 0.990), (very high, 0.328)}    

 

Figure 5.  The matching fuzzy set 
∧

RL *   Figure 6.  Defuzzification of RM* 

The risk assessment group produces 25 rules in the rule base as shown in Table 7, 
where VL, L, M, H, VH, N, T and I represent very low, low, medium, high, very high, 
negligible, tolerable and intolerable, respectively. These rules are interpreted as, for 
example: if RL is very low and RS is very low, then RM is negligible; if RL is very low 
and RS is low, then RM is negligible.  

Table 7 Table of if-then rules 
Risk likelihood (RL) Experts VL L M H VH 

VH N T I I I 
H N T T I I 
M N T T T I 
L N N T T T 

Risk 
severity 
(RS) 

VL N N N T T 
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The min-max rule of implication is used in this case study. The principle of this 
method is using minimum operator in the fuzzy input region while taking the 
maximum operator to calculate these minimized fuzzy sets in the fuzzy output region. 
The fuzzy inference can be broken down into four steps as described below. 

(1) Determining which rule is on in the rule base 
From the mapping of inputs RL* × RS*, the following 9 rules in Table 7 are fired: 

1R : If RL is low and RS is medium, then RM is Tolerable; 
2R : If RL is low and RS is high, then RM is Tolerable; 
3R : If RL is low and RS is very high, then RM is Tolerable; 
4R : If RL is medium and RS is medium, then RM is Tolerable; 
5R : If RL is medium and RS is high, then RM is Tolerable; 
6R : If RL is medium and RS is very high, then RM is Intolerable; 
7R : If RL is high and RS is medium, then RM is Tolerable; 
8R : If RL is high  and RS is high, then RM is Intolerable; 
9R : If RL is high and RS is very high, then RM is Intolerable; 

(2) Taking the minimum operator to calculate the strength of the fired rules 
The process is shown as follows: 

1R :  α1 = µ L (RL*) ∧  µ M (RS*) = min (0.610, 0.311) = 0.311 
2R :  α2 = µ L (RL*) ∧  µ H (RS*) = min (0.610, 0.990) = 0.610 
3R :  α3 = µ L (RL*) ∧  µ VH (RS*) = min (0.610, 0.328) = 0.328 
4R :  α4 = µ M (RL*) ∧  µ M (RS*) = min (0.842, 0.311) = 0.311 
5R :  α5 = µ M (RL*) ∧  µ H (RS*) = min (0.842, 0.990) = 0.842 
6R :  α6 = µ M (RL*) ∧  µ VH (RS*) = min (0.842, 0.328) = 0.328 
7R :  α7 = µ H (RL*) ∧  µ M (RS*) = min (0.130, 0.311) = 0.130 
8R :  α8 = µ H (RL*) ∧  µ H (RS*) = min (0.130, 0.990) = 0.130                                                                                                
9R :  α9 = µ H (RL*) ∧  µ VH (RS*) = min (0.130, 0.328) = 0.130 

(3) Determine the control outputs of fired rules 
According to Eq. (4), the control outputs of fired rules can be obtained as follows: 

1R :  α1 ∧  µ T (RM*) = min (0.311, µ T (RM*)) 
2R :  α2 ∧  µ T (RM*) = min (0.610, µ T (RM*)) 
3R :  α3 ∧  µ T (RM*) = min (0.328, µ T (RM*)) 
4R :  α4 ∧  µ T (RM*) = min (0.311, µ T (RM*)) 
5R :  α5 ∧  µ T (RM*) = min (0.842, µ T (RM*)) 
6R :  α6 ∧  µ I (RM*) = min (0.328, µ I (RM*)) 
7R :  α7 ∧  µ T (RM*) = min (0.130, µ T (RM*)) 
8R :  α8 ∧  µ I (RM*) = min (0.130, µ I (RM*)) 
9R :  α9 ∧  µ I (RM*) = min (0.130, µ I (RM*)) 

It is noted that Rule 1R , 2R , 3R , 4R  and 7R are included into Rule 5R ; Rule 8R  and 
9R  are included into Rule 6R . 

(4) Taking the maximum operator to calculate the total relation 
According to Eq. (5), the total relation is given by the membership function as 
follows: 

{ }*))(,328.0min(*)),(,842.0(minmax*)( RMIRMTRMagg µµµ =       
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Defuzzification. This step is to convert the fuzzy output RM* into a matching 
numerical value RM in describing the risk magnitude of fire. By using the centre-
average defuzzification operator as shown in Eq. (7), RM is given as follows:  

121.7
328.0842.0

328.010842.06 =
+

×+×=RM  

Consequently, the overall risk magnitude of fire while demolition of the commercial 
building is 7.121 under the defined scale system of RM, i.e. the risk is between 
Tolerable and Intolerable with a belief of 62.6% for Tolerable and 37.4% for 
Intolerable as shown in Figure 6.  

4. The output modification stage 
In reviewing the assessment process, the final result is found reliable so that no further 
output modification is needed. This result provides the risk management project team 
with a valuable data for risk response decision making. 

CONCLUSIONS 
Traditional risk assessment approaches and methodologies often do not capture the 
nature of construction projects particularly when they involve inherent subjectivity 
and uncertainty. On the other hand, the use of fuzzy set theory can provide a reliable 
tool to handle ill-defined problems and facilitate the decision making in a vague and 
fuzzy environment. The proposed risk assessment methodology has favourable 
flexibility for situations where fuzzy and/or crisp preferences are presented. It encodes 
knowledge directly in a way close to the natural thought of experts and the way of the 
decision making process, which makes the knowledge acquisition easier, more reliable 
and less ambiguities. Moreover, the methodology is particularly suitable for the risk 
analysis involving multiple experts and substantial uncertainties due to the existence 
of imprecise and incomplete information. 
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