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In a typical Monte Carlo simulation (MCS), it is required to assign probability 
distribution functions (PDFs) for uncertain parameters. Due to lack of or irrelevance 
of historical whole-life costing (WLC) data, these functions are usually assumed. The 
research work that underpins this paper aimed to identify the significance of errors in 
various input parameters in a WLC exercise and to identify critical parameters in 
assigning a probability distribution. In carrying out the study, a number of case 
studies have been identified and analysed using a risk assessment software. Besides, a 
number of metrics to assess the impact have been identified and employed. Typical 
results show that varying the type and range of input PDFs only affect the certainty 
level of simulated WLC results while variations in the standard deviation affected the 
risk ranking of uncertain input variables. The most significant impact was that due to 
variations in the mean of input PDFs, which does not only affect the certainty of the 
decision, but can even change the decision altogether.  

Keywords: Decision-making, Monte Carlo simulation, probability distributions, 
sensitivity analysis, whole-life costing. 

INTRODUCTION 
Whole-life costing (WLC) is highly dependent on an extensive amount of data. 
Assumptions and estimates are normally made whilst collecting data and predicting 
the behaviour of future events. As a result, the input data of WLC (life cycle, discount 
and inflation rates, initial cost, annual operation and maintenance costs etc.), which 
are based on estimates rather than known quantities is normally characterised with so 
`much uncertainty. Consequently, uncertainty assessment becomes crucial in WLC 
exercises.  

Several techniques are available for risk and uncertainty assessment in a WLC 
exercise. The two most commonly used ones are the sensitivity analysis (SA) and the 
Monte Carlo simulation (MCS) techniques. The SA technique is a simple 
straightforward technique that is used to identify the impact on a change in a risky 
variable, keeping all other variables constant. However, in practise, this is not always 
the case as all risky and uncertain parameters can be expected to vary simultaneously. 
The MCS can be seen as an extension of sensitivity analysis as it takes explicit 
account of the fact that all risky and uncertain parameters can be expected to vary 
simultaneously. MCS is a means of examining problems for which unique solutions 
cannot be obtained and it has been used in WLC modelling by many authors (e.g. 
Flanagan et al., 1987, 1989; Ko et al., 1998; Goumas et al., 1999). However, it makes 
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the assumption that parameters subject to risk and uncertainty can be described by 
probability distributions. These PDFs are then used by the technique to generate the 
probability distribution of the dependant variable, usually the net present value in the 
WLC case. 

To complete a MCS, therefore, it is required to assign PDFs for uncertain variables. 
Such functions are best derived from statistical analysis of significant historical data, 
which is not always available or inadequately defined. In such cases, PDFs are usually 
assumed. There is therefore the possibility that different WLC analysts will describe 
the uncertainties of the same project using different PDFs. Will these analyses come 
out with very different outputs that may change the decision taken? It therefore 
becomes necessary to assess the impact of varying the assumed input PDFs to WLC 
results. It is believed that this would help identify the significance of the errors or 
differences in various input variables in a WLC exercise and identify those parameters 
that require greater care in assigning a probability distribution. Sensitivity Analysis 
can be used to assess the impact of varying the PDFs. 

The objective of the research work that underpins this paper was to study the effect of 
varying the parameters defining assumed PDFs of input variables in a WLC study on 
the simulated NPVs through a number of case studies. The rest of the paper is 
organized as follows. In the next section, the research methodology is outlined and a 
typical case study is introduced. Then, typical results are presented and analyzed. 
Finally, conclusions are drawn. 

METHODOLOGY 

Analysis Procedure 
Crystal Ball 2000® (Decisioneering, 2000) was selected and used to analyse a number 
of case studies. This software offers an adequate PDF library, a user-friendly 
interface, and a good output scheme. The analysis procedure adopted in this study 
included the following six steps: 

Step 1: an NPV Excel model is developed to simulate the mathematical WLC 
model. 

Step 2: the preferences for running the simulation are set. Such preferences 
include the maximum number of trials, confidence level, and sampling 
method. 

Step 3: assumptions are defined for uncertain input variables for the case at hand.  

Step 4: the simulation process is run and the frequency and cumulative frequency 
count data and other relevant statistics are extracted from each simulation. 

Step 5: steps 3 and 4 are repeated as required. 

Step 6: results are analysed as detailed in the following subsection.  

The Mathematical Model 
The NPV model developed by Kishk (2001) was employed because it has been 
developed such that calculations are both automated and optimised. This is mainly 
facilitated by the derivation of automatic expressions for calculating the number of 
occurrences on non-annual recurring costs. In this way, these costs can be dealt with 
directly without the need to express each cost to a number of equivalent cash flows. 
Besides, compact expressions are formulated for various discount and annualisation 
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factors.  Furthermore, whole-life cost contributions of each cost can easily be 
followed. 

It calculates the whole life cost of an alternative i , as  
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where iNPV  is the net present value of the alternative, ivikijimil RVCAFIC  and , , ,  are 
initial, future one-off, annual-recurring, non-annual recurring costs and resale values 
of alternative i , and PWSPWNPWAPWO ikijim  and  , ,  are discount factors given by 
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where r  is the discount rate and T  is the analysis period.  

Case Study 
A number of case studies were used in this study. Because of lack of space, only one 
case study is reported. Input parameters for the selected case study are summarised in 
table 1. As shown, all the cost variables in equation (1) are included to ensure a wide 
scope for analysis. In this case, it is required to determine the whole life costs of a 
design alternative for an analysis period of 30 years. As shown, most cost variables 
are included to ensure a wide enough scope for analysis.  
Table 1: Input variables for the case study 
Input variables Mean             Range 
Initial cost (£’000) 480 432 - 528 
Non-annual recurring costs (£’000) 250 175 - 325 
Annual operating costs (£’000) 40 36 - 44 
Discount rate (%) 4 2.8 - 5.2 
Analysis period (years) 30 27 - 33 
Frequency of repair 8 7 - 9 
Salvage value (£’000) 200 150 - 250 
 

Analysis Metrics 
PDFs may be discrete or continuous. A discrete probability distribution describes 
distinct, finite; commonly integer values while a continuous distribution assumes all 
values in the range are possible. Because most construction industry activities are 
continuous (Flanagan and Norman, 1993), only continuous PDFs are considered in 
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this study. These distributions are smooth solid curves that depend on one or more 
parameters. There are three basic types of parameters (Evans and Olson, 2002): 

• A shape parameter controls the basic shape of the distribution. A distribution 
can have two shape parameters, e.g. the beta distribution; 

• A scale parameter controls the unit of measurement or spread within the range 
of the distribution. Changing the scale parameter either contracts or expands 
the distribution along the horizontal axis; and 

• A location parameter that specifies the location of the distribution relative to 
zero on the horizontal axis, e.g. the midpoint or the lower endpoint of the 
range of the distribution.  

These parameters are defined by statistical terms such as mean, standard deviation, 
minimum, and maximum. All distributions will not have all three parameters; some 
may have more than one shape parameter. Understanding the effects of these 
parameters is important in selecting distributions as inputs to simulation models 
(Evans and Olson, 2002).  

In addition to the mean, standard deviation, two extra metrics have been employed: 
the confidence interval, and the certainty level. A confidence interval is a bound 
calculated around a statistic that attempts to measure this error with a given level of 
probability (Decisioneering, 2000). Confidence intervals are important for 
determining the accuracy of the statistics, and hence the accuracy of the simulation. 
Typically, MCS software uses confidence intervals to determine when a specified 
accuracy of statistics has been reached, and then stops accordingly (Decisioneering, 
2000).  

On the other hand, certainty describes the percentage of simulation results that fall 
within a range. A certainty level shows the certainty of achieving the values within a 
specific range and it equals the shaded area bounded by that range (figure 1). Figure 2 
illustrates the selection process using NPVs for the case of two competing 
alternatives. When comparing two competing options using their NPVs, the area of 
overlap, OA , (figure 2) indicates a decision uncertainty region. In other words, an 
increase in the area of overlap means less certainty of decision for the best alternative 
and vice versa. In the limit, the certainty of the decision is absolute when there is no 
overlap. 
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Figure 1: The concept of certainty level. 
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Figure 2: Comparing two competing alternatives using their NPVs. 

Base Case 
For the purpose of analysis and assessment of the impact of varying the input PDFs, a 
base case situation was considered where all input parameters are assumed to be 
certain, i.e. parameters like range, variance and standard deviation are equal to zero, 
and the mean, median and mode all have the same value. In this way, the resulting 
NPV distribution will reflect only the effect of the variation of the PDF of the input 
parameter under consideration. 

RESULTS AND ANALYSIS 

Effect of the Type of PDF 
The effect of varying the type of probability distribution function of input variables on 
WLC results has been investigated. Five distribution types were considered for this 
study; they include: uniform, triangular, normal, lognormal, and beta distributions. 
These distributions are used to describe uncertainty in each input variable given in 
Table 1. Steps 3 to 6 of the analysis procedure were repeated, each time, changing the 
type of probability distribution function of an input variable while the other input 
variables were kept constant (certain).  

Figures 3 to 6 show frequency distributions of NPVs resulting from varying the type 
of PDFs representing input cost variables including initial cost, annual operating cost; 
non-annual maintenance cost and salvage value, respectively. Although there are some 
shifts in the output distributions, there are no significant differences between the mean 
values/modes for various types of PDFs. The difference is greatest for annual costs, 
then initial cos. This may be attributed to the fact that annual costs contribute most to 
the NPV, followed by initial costs.   

In general, the type of distribution has an effect on the certainty levels of the output 
net present values (NPVs). As expected, input uniform distributions resulted in the 
lowest certainty levels as indicated by the wide short output frequency distributions. 
In some cases, e.g. figure 3, the output frequency distributions for some distributions 
were practically the same; may be due to the small range estimation used in the 
analysis.  

Therefore, it can be deduced that the type of distribution used to simulate input cost 
variables has no obvious effect on the output NPV mean; and hence on the ranking of 
competing alternatives. However, this might have an effect on the certainty of 
ranking. 
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Figure 3: NPV distributions for various types of PDFs used to simulate the initial cost 
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Figure 4: NPV distributions for various types of PDFs used to simulate annual operating costs 
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Figure 5: NPV distributions for various types of PDFs used to simulate non-annual costs 
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Figure 6: NPV distributions for various types of PDFs used to simulate the salvage value 

The effect of the assumed type of PDF was also investigated for discounting input 
variables. Figure 7 shows the resulting NPVs frequency distributions for various PDFs 
used to simulate the discount rate. As shown, the resulting distributions are mostly 
right-skewed due to the discounting process; but with no significant change on the 
mean value or the output range can be observed. In general, a similar effect to that of 
input cost variables can be concluded. 
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Figure 7: NPV distributions for various types of PDFs used to simulate the discount rate 

Effect of the Assumed Mean 
The normal distribution is usually regarded as the most important distribution in 
probability theory because it models many naturally occurring phenomena (Flanagan 
and Norman, 1993; Hayter, 2002). Therefore, it was selected and used for 
investigating the effect of errors in the assumption of the mean values and scatter of 
input cost and discounting data. Figure 8 shows the effect of varying the mean value 
of the non-annual recurring costs as a ratio of the certain base case denoted as the 
mean ratio (MR) in the figure. As expected, varying the mean value affected mainly 
the resulting mean outcomes as indicated by the regular shift of NPV frequency 
distributions. This means that a significant error in the mean value of a cost variable 
may not only affect the certainty of the decision, but can even change the decision 
altogether. 
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Figure 8: Effect of mean variation of non-annual recurring costs on NPVs 

 

Equations 2 to 5 show an inverse relationship between the discount rate r  and the 
discounting factors. This is reflected in figure 9 where an increase in the discount rate 
mean value lead to lower values for discounting factors which cause decreases in the 
WLC contributions of their associated cost variables; i.e. a corresponding reduction in 
the NPV mean value. It can be seen also from figure 9 that the shift the resulting NPV 
frequency distributions is less regular compared to the case of cost variables. This may 
be attributed to the non-linear discounting process as indicated by equations 2 to 5. 
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Figure 9: effect of mean variation of the discount rate on NPVs 

 

Effect of the Assumed Standard Deviation 
The standard deviation is a measure of the dispersion of the outcomes about the mean 
value and it is an indication of the uncertainty of a distribution. The effect of errors in 
the assumption of the standard deviation of input cost and discounting data was also 
investigated. Figures 10 and 11 show the effect of varying the standard deviation to 
mean (SDTM) ratio of non-annual costs and the discount rate, respectively. As shown, 
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a change in the standard deviation only changes the shape of the probability 
distribution curve. It either becomes narrower or flatter. As shown, the smaller the 
standard deviation, the narrower the distribution graphs and the larger the standard 
deviation, the flatter the curve. Because the input range was fixed, the same range of 
the resulting NPVs can be noticed. An increase in the standard deviation would 
normally cause the graph to become wider. It can also be that there is almost no effect 
on the mean NPVs. Thus, errors in the assumption of standard deviations of input 
variables can only affect the certainty of the decision. 
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Figure 10: Effect of the assumed standard deviation of non-annual costs on NPVs 
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Figure 11: Effect of the assumed standard deviation of the discount rate on NPVs 

 

CONCLUSIONS  
Based on the research work that underpins this paper, the following conclusions can 
be drawn. 

• The type of PDF used to describe uncertainty in input variables in a WLC 
analysis has no significant impact on the simulated output mean or range. In 
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other words, it does not have a significant effect on WLC-based decisions. 
However, it can alter the certainty level of the decision. 

• Errors in the assumption of standard deviations of normally distributed input 
variables can only affect the certainty of the decision. 

• Variations in the mean value of input variables have the most significant 
impact on the output. It does not only affect the certainty of decision, but can 
change the decision altogether. In representing uncertain variables with PDFs, 
attention must be given to the mean value of PDF being used. 
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