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Whole Life Cycle Costing (WLCC) provides a valuable insight into the economic 
efficiency of constructed facilities.  It has however, been criticized by practitioners 
and academics alike for producing forecasts of a high-risk nature, a consequence of 
the large number of assumptions inherent in the modelling process.  Most WLCC 
systems use deterministic assumptions but a stochastic approach to modelling the 
assumptions will achieve a better representation of the likely costs.  Monte Carlo and 
Latin Hypercube simulation can be used to create forecasts of the whole life costs but 
the accuracy of these are strongly correlated to the quality of the input probability 
distributions, hence the purpose of this paper is to present a methodology for the 
definition of probability distributions that best represent the facilities management 
costs in an acute care NHS hospital building 

The data used in this research were obtained from National Health Service (NHS) 
Estates on the Facilities Management (FM) costs of over 450 acute care NHS Trusts 
in England and Wales.  The data was analysed to obtain the parameters of the 
theoretical distributions that best describe the FM costs for a local NHS Acute Care 
teaching hospital building. The distributions were then validated using various 
goodness-of-fit techniques.  The result of this work might then be used as stochastic 
assumptions in the modelling of WLCC. The paper also discusses some issues of 
accuracy in distribution fitting, particularly the class interval rule and its effect on the 
quality of the results, and the selection of an appropriate goodness-of-fit test. 

Keywords: facilities management, hospital buildings, National Health Service acute 
care, probability density functions, whole life costing. 

INTRODUCTION 
WLCC is widely recognized amongst practitioners and academics as a valuable tool in 
assessing the economic efficiency of constructed facilities.  It can be used as a means 
of comparing options and their associated costs and incomes over a period of time 
(CBPP 1998), or as a tool for assessing the long terms costs of ownership in existing 
buildings through stochastic modelling and key performance indicators (Kirkham and 
Boussabaine 2000a). 

WLCC though is to a significant extent, dependent on assumptions about the future 
costs of operating and maintaining the building and its environment.  It has been 
widely noted that concerns about using a WLCC approach are based mainly on the 
risky nature of the assumptions on which the forecasts are modelled (BRE 1999, 
Jovanovic 1999, Edwards and Bowen 1998).  Whilst forecasting of future costs is to 
some extent an inexact science, this should not dissuade analysts and managers from 
attempting to apply WLCC principles (Woodward 1997). 
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As one of the leading providers of acute healthcare services in Europe, the United 
Kingdom NHS operates and manages a complex property portfolio of high occupancy 
buildings and establishments.  Approximately £33.3bn of UK government spending is 
apportioned to the NHS, and some 22% of this accounts for estate management and 
capital investment (NHS Estates 1999a).  The costs of maintaining and operating these 
buildings constitutes a significant proportion of total NHS expenditure on the estate, 
and in particular, the FM costs represent an integral part of this expenditure. As part of 
Audit Commission guidance on NHS FM expenditure (Audit Commission 2000), a 
large proportion of the FM work is now outsourced to external private contractors 
(NHS Estates 1996, NHS Estates 1998, NHS Estates 1999b), and equipping 
professionals with the ability to monitor the cost effectiveness of these services should 
be an integral part of any NHS Trusts financial management programme. 

NHS Estates collate annual data on FM costs from NHS trusts as part of the Trust 
Financial Proformas (TFP) returns (NHS Estates 1997), this gives stakeholders a 
snapshot of the variance of FM costs through the entire NHS estate.  This is generally 
used to create simple benchmarks whereby NHS trusts can gauge the economic 
efficiency of their FM services against national averages. 

However, the nature of this data poses problems for use in WLCC exercises.  As the 
data is collated at trust level, it represents total spending on FM costs for all buildings 
within the Trust’s estate, not for individual sites that make up the entire trust property 
portfolio.  Most acute care trusts encompass several buildings within the estate and 
hence the data in its raw form cannot be used to monitor FM costs for individual 
buildings.  To facilitate an accurate simulation of FM costs, the data must be 
transformed and analysed to reflect the cost of individual buildings within a Trust 
estate portfolio, not for the estate as whole.  This paper proposes a methodology for 
addressing this issue. 

RESEARCH METHODOLOGY 
The purpose of this research is to present a methodology for the formulation of 
probability distributions of FM costs in a local NHS acute care trust building for the 
purposes a WLCC analysis.  To perform this task, an original data sample of over 450 
acute care NHS hospital Trusts’ FM costs was used as the basis of the study.  The first 
stage was to remove samples from the set that the contained FM data on non-hospital 
sites.  Non-hospital sites, such as primary care buildings, clinics etc were removed 
because they do not reflect the true FM costs of acute care hospitals resulting in 
distorted hypothesis testing of the distribution fitting later on in the research.  Once 
this had been performed, eliciting a set of observed data that had on aggregate, an 
approximately equal mean floor area to that of a typical ward block building in a 
university teaching hospital, then reduced the sample further.  Similarly, building 
characteristics such as gross heated volume were used to further reduce the sample.  
After consultation with practitioners, the final data sample was reduced to 52 sets to 
eliminate data sets that had missing or erroneous data.  All final data sets exhibited 
similar characteristics to that of the main ward block building used as the basis for the 
study (i.e. similar heated volume, occupancy and floor area). 

The data sets were then statistically analysed for distribution fitting, using two 
software applications, ExpertFit™ and BestFit™, resulting in a distribution for each 
FM cost centre.  Testing the distribution against 28 continuous probability 
distributions and the Chi-square goodness-of-fit test validated each distribution.  The 
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two packages were used to compare results and identify any ambiguity in first ranked 
fits.  It was found that both packages yielded almost identical results. 

FITTING PROBABILITY DENSITY FUNCTIONS TO FM COSTS 
Most approaches for economic risk analysis use subjective probabilities to describe 
the uncertainty of input variables when historical data may not be available 
(Ranasinghe and Russell 1993, Perry and Hayes 1985, Bjornsson 1977).  However, 
when historical cost data is available, the collation of this data and the subsequent 
modelling of real-world scenario’s can give rise to several problems when trying to 
create valid probability distributions.  A simple heuristic technique for assessing the 
validity of a distribution is to plot a histogram of the data and visually inspect the 
variance, kurtosis and skewness of the data over the range (Law 1998).  This can give 
a basic suggestion as to which distribution (or family of distributions) best represents 
the data, but there are several factors, which must also be addressed before selecting a 
possible distribution. 

If probability distributions are to be used to create stochastic assumptions of WLCC 
inputs, then the way data is analysed and transformed into PDFs is of significant 
interest and importance. Weiler (1965) concluded that many errors in the outputs of 
simulation models could be traced back to assigning incorrect values to the parameters 
of a distribution, and indeed the selection of an appropriate distribution.   

Where is it possible to collect data on whole life costs on FM cost centres of interest, 
such data can be used to specify a distribution based on one of the following 
approaches: a trace driven simulation, an empirical distribution, or a theoretical 
distribution function (Maio et al. 2000).  If data is used to define an empirical 
distribution, the data is grouped to form a frequency histogram, and the resulting 
information is transferred to the simulation model.  However, if the data set is used to 
fit a theoretical distribution using heuristics and goodness-of-fit techniques, it 
smoothes the irregularities that prevail and allows the possibility of sampling the 
extreme values of the distribution.  This technique is regarded generally as the best 
method for performing simulations, and is used here for WLCC forecasts within the 
body of this research (Kirkham and Boussabaine 2000b).  

PRE-DATA ANALYSIS: CLASS INTERVAL RULES 
Class intervals, or “bins” are the ranges by which the data is grouped into on a 
histogram.  The number and width of each class interval can have a significant bearing 
upon which distributions best fit the data being represented (when using the chi-square 
goodness-of-fit test).  Some researchers (Montgomery and Ranger 1994) have 
suggested that the number of class intervals should fall in the region between five and 
twenty class intervals.  They suggested that the square root rule should be used to 
calculate the number of observations.  Simply, taking the square root of the number of 
observations in the data set derives the number of class intervals.   

Sturges’ Rule is reported on as another method of class interval selection (Maio et al. 
2000).  Sturges’ Rule states that, for n observations, Xi to be summarized in a 
frequency distribution, then the number of class intervals for the distribution should be 
calculated by: 

⎣ ⎦n2log1+=Κ           (1) 
where K = number of bins and n = number of observations, and 
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where M = width of class intervals, Xmax and Xmin = maximum and minimum values of 
observations in the data set. 

For the data presented in this paper, the selection of class interval rule is not critical as 
both methods yield similar results for distribution fitting and Chi-square evaluation.  
Figure 1 shows the convergence of both rules between thirty five to fifty five 
observations, which reflects the number of observations used in this research.  
However, for modelling using in excess of 70 observations, then careful consideration 
of which rule is most appropriate needs to be undertaken as the graph shows a clear 
divergence of class intervals after that point. 
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Figure 1: Comparison of Square root and Sturges’ Rule for class interval calculation 
 

GOODNESS OF FIT 
Whichever method of calculating the number of class intervals in the distribution is 
used, the next stage is to fit a distribution to the data set.  Although visual inspection 
can reveal which kind of distributions are most likely to represent the data, a statistical 
test should be performed to validate the choice of selected distribution.   

The Chi-square test is a formal comparison of the relationship between the observed 
data set and the theoretical distribution fitted.  The Chi-square test though is highly 
correlated to the class interval rule chosen and as such, the method used to calculate 
the number of class intervals effects upon the Chi-square test results, particularly so in 
data sets where more than seventy observations are used.  This has led to the 
conclusion that the Chi-square test is weakened by its dependence on the class interval 
rule.   

Notwithstanding, this test is widely used by construction researchers involved in 
fitting distributions to data sets.  The chi-square statistic is defined as: 
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Where K = number of bins, Ni = the number of observed samples in the ith bin and Ei = 
the expected number of samples in the ith bin 

Inspection of Figure 1 reveals that the class interval rule has no significant impact 
upon the accuracy of the distribution fitting procedure in this research.  Sturges’ rule 
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and the square root rule converge at approximately 40 observations, and given the data 
set used in this study is 52, it can be concluded that either method will yield similar 
results, and not impact significantly upon the goodness of fit ranking procedure. 
Table 1: Results of distribution fitting for each cost centre 

Cost centre Class interval rule Observed 
data 

First ranked distribution 
using the Chi-square  
Goodness of fit test 

Water cost Square root 52 Inverse Gaussian 
Sewerage cost Square root 52 Logistic 
Clinical waste disposal cost Square root 52 LogLogistic 
Domestic waste disposal cost Square root 52 LogLogistic 
Meal provision cost Square root 52 LogLogistic 
Laundry and linen services cost Square root 52 LogLogistic 
Porterage cost Square root 52 LogLogistic 
Patient transport cost Square root 52 LogLogistic 
Non-stock items cost Square root  52 Erlang 
Cleaning cost Square root 52 Pareto 
Patient records cost Square root 52 LogLogistic 
Sterile services cost Square root 52 Rayleigh 
Postage costs Square root 52 LogLogistic 
Capital charges cost Square root 52 Logistic 
Security cost Square root 52 LogLogistic 
Telecommunications cost Square root 52 LogLogistic 

 

RESULTS 
Table 1 shows the results of the fitting procedure.  It can be observed that, when using 
the Chi-square goodness of fit test, the LogLogistic distribution was found to give first 
ranked fits for 62% of all distribution fits.  However, in some cases where the 
LogLogistic distribution was not first ranked, the distribution was ranked sufficiently 
highly enough to consider its use in place of the first ranked distribution.  It was 
therefore decided to assess whether the LogLogistic distribution could be used for the 
other cost centres where it was not the first ranked distribution (Water cost, sewage 
cost, non-stock items cost, cleaning cost and capital charges cost), through statistical 
justification.  The purpose of this was to assess the validity of the hypothesis that the 
LogLogistic distribution is valid for all cost centres in FM services for acute care NHS 
hospitals. 

For each cost centre that did not have a first ranked LogLogistic distribution, it was 
decided to compare both the first ranked distribution and a hypothesized LogLogistic 
distribution on a pair-wise basis.  To do this, the parameters of the first ranked 
distribution were obtained from the results discussed in Table 1.  Then, for the 
relevant cost centres, a LogLogistic distribution was also fitted and again, the 
parameters were elicited.  Simulation software was then used to generate 100 random 
samples for each distribution within the defined parameters.  The purpose of this was 
to test whether the hypothesized LogLogistic distribution differed significantly from 
the first ranked distribution, based on a randomly generated sample of 100 cost 
observations. 
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Figure 2: Frequency comparison of first ranked distributions for all cost centres 
 

VALIDATION OF THE HYPOTHESIZED LOGLOGISTIC 
DISTRIBUTION 

To test the validity of the hypothesized LogLogistic distribution, a simple hypothesis 
testing procedure was used.  The distributions were compared using a two samples 
(assuming unequal variances) t-test.  The t-test was used to examine a null and 
alternative hypothesis for each cost centre.  If any of the two sets of distributions are 
similar, then the mean difference is expected to be around zero.  But if the mean 
difference is much bigger than zero, then there will be a real difference between the 
distributions.  Therefore, it is required that the null hypothesis of the mean difference 
being zero be tested.  The following null hypothesis and alternative hypothesis were 
used for each cost centre. 

1. H0:µ1=0 the difference between the first ranked distribution and the hypothesized 
LogLogistic Distribution is small 

2. H1:µ1 ≠0 the difference between the first ranked distribution and the hypothesized 
LogLogistic Distribution is large enough to suggest a real difference 

Table 2 shows the statistics resulting from the t-test procedure.  As a two-tailed test is 
used in this research, the P(T<=t) two-tail value determines the acceptance region of 
he null hypothesis.  For P ≥ 0.05, the null hypothesis is accepted and for P < 0.05 the 
alternative hypothesis is accepted.   It was found that for three out of six cost centres 
(water cost: P(T<=t) two tail = 0.885, sterile services: P(T<=t) two tail = 0.708 and 
sewage cost: P(T<=t) two tail = 0.923) the LogLogistic distribution could be used in 
place of the first ranked distribution without any significant impact upon the accuracy 
of the results.  The LogLogistic distribution could not be fitted to the capital charges 
cost centre because the distribution that best fitted this data is required to be of the 
unbounded continuous distribution type, not a non-negative distribution, such as the 
LogLogistic distribution.  To reinforce the t-test results, the statistical differences 
between the first ranked distribution and the hypothesized Loglogistic distribution 
were calculated.  To do this, a variety of statistical error measurements exist (Kirkham 
and Boussabaine 2000).  

Recent forecasting research (Kirkham and Boussabaine 1999, Boussabaine et al. 
1999) advocated the use of the Theils U statistic to test for differences between 
statistical models.  Theils U calculates the difference by comparing changes in the  
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observations of the first ranked distribution with changes in the hypothesized 
LogLogistic distribution.  The U value is a coefficient value falling in the range 
between 0 and 2, where the difference is small as U tends to 0.  The statistic is 
calculated using the following formula: 
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where F = cost generated from hypothesized LogLogistic distribution, x = cost 
generated from first ranked distribution, n = number of observations and e = x - F 
Table 2: Results of 2-sample assuming unequal variances t-test 

Water cost centre 
 

Sterile services cost centre Sewage cost centre Cost centre and distribution 
 
 
t-test descriptives 

Inverse 
Gaussian 

LogLogistic Rayleigh LogLogistic Logistic LogLogisti
c 

Mean 
Variance 
Number of observations 
Hypothesized mean difference 
Degrees of freedom 
t statistic 
P(T<=t) one tail 
t critical one tail 
P(T<=t) two tail 
t critical two tail 

83836.5073 
884518111.1 
100 

83226.89968 
906696376.7 
100 
0 
198 
- 0.14403783 
0.442808543 
1.652585979 
0.885617086 
1.972016435 

357549.5966 
45998796686 
100 

368731.9895 
43436199931 
100 
0 
198 
0.373921984 
0.354431227 
- 
0.708862454 
0.062786398 

82728.35819 
689093296.9 
100 

83084.32622 
685450348.2 
100 
0 
198 
0.096013373 
0.46180353 
- 
0.923607059 
0.062786398 

 
Non-stock items cost centre 
 

Cleaning cost centre Capital charges cost centre Cost centre and distribution 
 
t-test descriptives Erlang 

 
LogLogistic Pareto LogLogistic Logistic LogLogistic 

Mean 
Variance 
Number of observations 
Hypothesized mean difference 
Degrees of freedom 
t statistic 
P(T<=t) one tail 
t critical one tail 
P(T<=t) two tail 
t critical two tail 

16906073.69 
3.0986E+14 
100 

12296638.21 
9.16782E+13 
100 
0 
153 
-2.30030013 
0.011391242 
- 
0.022782484 
0.062809704 

2980826.112 
4.5561E+13 
100 

1344829.55 
1.95323E+11 
100 
0 
100 
-2.41855911 
0.008695281 
- 
0.017390561 
0.062864274 

 Invalid fit 

 
Table 3: Error measurements statistics used in the validation process 

Error measurement statistics Cost centre 
Mean 
error 
 

Mean 
absolute 
error 

Sum of squared 
errors 
 

Mean absolute 
percentage 
error 

Theil’s U 
statistic 
 

McLaughlin
’s batting 
average 

Water cost 16.58148 16.58148 26947420 0.0011223 0.002814 399.7185 
Sterile services 64.26773 64.26773 40481480 0.007425 0.001171 399.8829 
Sewage cost 20.97798 20.97798 43131820 0.015076 0.000663 399.9337 
Non-stock items -291541 291541 8.33E+14 0.785195 1.0 250.8448 
Cleaning cost -289573.9 289573.9 8.22E+14 11.61338 2.0 <100 
Capital charges - - - - - - 

 
The table above gives the results of the tests.  These statistical measurements 
supported the t-tests in that the water cost, sterile services and sewage cost all differed  
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insignificantly from the hypothesized LogLogistic distribution, exhibiting U stats of 
0.002, 0.001 and 0.00006 respectively, thus indicating almost identical fits. 

DISCUSSION 
Appendices 1, 2 and 3 show the final results of the fitting procedure post validation, 
providing the relative parameters and statistical descriptions.  The two-stage 
validation process presented in this paper provided significant statistical justification 
for the use of the LogLogistic distribution in modelling the FM costs in acute care 
buildings in the NHS.  After the hypothesis testing of non first-ranked LogLogistic 
distributions it was found that the distribution accounted for 81.25% of all first ranked 
distribution fits in all the FM cost centres.  This was further supported by the analysis 
of both the variance of the skewness and kurtosis of each cost centre, which was 
relatively uniform, returning values of 0.515 and 8.503 respectively.  Visual 
inspection of the distributions further supported this in that the costs were distributed 
principally around the lower end of the range of values, thus indicating a better fit for 
positively skewed distributions. 

The results provide the analyst with a great deal of information about the costs of FM 
services when modelling the stochastic inputs into whole life cycle costing exercises.  
The use of empirical data in this research lends credibility to the assumption that the 
LogLogistic distribution is a suitable for representing FM costs.  This is particularly 
useful in the analysis of whole life costs where empirical data to calculate the 
parameters of the distribution may not be available.  Expert judgement can be used to 
form likely estimates of the parameters of the distribution, based upon the a priori 
assumption that the LogLogistic distribution best represents the FM costs. 

CONCLUSION AND FUTURE WORK 
The results of this research project support the overall hypothesis that the LogLogistic 
distribution is a powerful and accurate distribution for modelling all of the facilities 
management costs in acute care NHS buildings.  Through a three-stage validation 
process, the accuracy of a hypothesized LogLogistic distribution was confirmed using 
historical facilities management cost data.  These distributions can therefore be used 
as simulation inputs in whole life cycle costing exercises using Monte Carlo or Latin 
Hypercube simulation, for example, in forecasting the long term costs of FM services 
in acute care hospital buildings where historical data is unavailable to model 
assumptions.  Generally, the triangular distribution is used in the absence of historical 
data but its weakness can have a significant impact upon the quality of simulation 
models.  The knowledge gained from this research project provides evidence of the 
applicability a non-negative positively skewed distribution in this kind of cost 
modelling. 

Using a case study, this paper has presented a methodology for developing PDF’s of 
FM costs for a specific building.  Similar studies should be conducted on distribution 
fitting of FM costs within predefined ranges of dependent variables for those such as 
heated volume, number of occupants, gross floor area etc.  For example, from the 
original data set, the total range of gross floor areas could be identified and then 
divided into distinct equal intervals.  For each interval, distribution fitting could then 
be employed throughout all the cost centres to assess whether a) the type of 
distribution differs for each cost centre as the floor area increases and b) the type of 
distribution is homogeneous throughout all cost centres and all gross floor area ranges.  
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Identifying the type of PDF by ranges then provides practitioners with the ability to 
benchmark costs based on the characteristics of their own establishment, and offers 
the possibility to develop key performance indicators. 
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Appendix 1: Parameters and descriptive statistics for Logistic distribution 
Cost Centre Parameters Descriptive Statistics 

 γ β α Mean Mode Median Standard 
Deviation

Variance Skewness Kurtosis

Water cost -546206.08 632584.4074 36.5148 87159 85430 86378 31508 992743234 0.188[est] 3.6119[est]
Sewerage cost -472819 558653.4 37.0882 86503 85022 85834 27393 7.5E+08 0.185[est] 3.6102[est]
Clinical waste cost -245702 335194.4 16.84673 91446 87139 89496 36554 1.34E+09 0.409[est] 3.8147[est]
Domestic waste cost -22600.4 58147.64 5.605916 38706 31924 35547 21215 4.5E+08 1.275[est] 5.9991[est]
Meal provision cost -1085570.3 2089396.36 7.946355 1059265 938343 1003826 505644 2.56E+11 0.882[est] 4.7404[est]
Patient records cost -1206764.9 1837627.637 8.8319 670194 584148 630863 395614 1.57E+11 0.790[est] 4.5098[est]
Laundry and linen cost -145131 573785.9 5.477928 461359 391254 428655 215516 4.64E+10 1.308[est] 6.1206[est]
Porterage cost -592866 1119743 8.910062 550419 498904 526877 238751 5.70E+10 0.783[est] 4.4928[est]
Patient transport cost -1834664 2337802 24.57662 509517 495406 503138 173573 3.01E+10 0.279[est] 3.6778[est]
Sterile services cost -1302790 1674678 13.08554 388085 352404 371888 237124 5.62E+10 0.528[est] 3.9857[est]
Postal services cost -655655 778694.6 38.28339 123915 121978 123040 36984 1.37E+10 0.179[est] 3.6069[est]
Security cost -28931.284 120182.4089 2.807842 120543 63245 91251 137088 1.88E+10 2.787[est] 14.387[est]
Telecommunication cost -1019122 1421720 15.31985 412621 390526 402607 170955 2.92E+10 0.450[est] 3.8689[est]
 
 
 
Appendix 2: Parameters and descriptive statistics for Pareto distribution 

Cost centre Parameters Descriptive Statistics 
 

 θ A Mean Mode Median Standard 
Deviation 

Variance Skewness Kurtosis 

Cleaning cost 0.573087 233221 - 233221 781709     
 
 
 
 
Appendix 3: Parameters and descriptive statistics for Erlang distribution 

Parameters Descriptive Statistics 
 

Cost centre 

m β shift Mean Mode Median Standard 
Deviation

Variance Skewness Kurtosis

Non-stock items cost 0.573 233221 8165 13718542 8165 9511474 13710377 1.88E+14 2 9

 


