

Ribeiro, F L (1999) A case-based reasoning framework in value engineering. In: Hughes, W (Ed.), 15th
Annual ARCOM Conference, 15-17 September 1999, Liverpool John Moores University. Association
of Researchers in Construction Management, Vol. 1, 287-96.

A CASE-BASED REASONING FRAMEWORK IN VALUE
ENGINEERING

Francisco Loforte Ribeiro

Instituto Superior Técnico, Departamento de Engenharia Civil, Secção de Estruturas e Construção, Av.

Rovisco Pais 1, 1096 Lisboa Codex, Portugal

Value Engineering (VE) is the title given to a set of value techniques applied during
the design or ‘engineering’ phases of a construction project that has its origins in the
US manufacturing industry. Currently, value engineers attempt to infer design
rationale information from drawings and specifications for carrying out the value
engineering analysis. Access to design rationales can help value engineers in different
ways. Case-based reasoning is a technology for problem solving based on recall and
reuse of specific experiences. Case-based reasoning offers techniques for representing
and managing complex design rationale cases, augmenting a set of specific design
experiences with generalized knowledge and formalizing a typically informal body of
knowledge. Agent-based systems technology offers modularity and techniques for
handling human-agent interaction, managing and searching information. This paper
describes the utility of design rationales in value engineering. It examines the
combination of case-based reasoning and agent-based technology to support value
engineering analysis. Finally, it proposes a case-based framework in value
engineering during design phase.

Keywords: case-based reasoning, design rationale, value engineering.

INTRODUCTION
Value Engineering (VE) was developed by Lawrence Miles in 1940s in the United
States of America. The combined growth in VE practice through different US
government agencies and private industry led to the establishment of the Society of
American Value Engineers (SAVE) in 1958, a professional body formed to foster VE
(Norton and McElligott 1995). Over the past decade, there has been a trend towards
applying value techniques at all stages of the project life cycle. Therefore, the term
value management (VM) has become a blanket term that covers all value techniques
whether they entails Value Planning, Value Engineering or Value Analysis. A recent
development in VM for construction industry (Connaughton and Green 1996)
recommends that VM should incorporate VE.

A VE study during design attempts to identify unnecessary costs in design parts and
components and suggest design alternatives (for those design items needing change)
to reduce life-cycle costs without reducing the quality, function and performance of a
building design (de la Garza and Alcantara 1997). Design involves the creation of a
set of documents describing a yet unconstructed product. These documents contain
implicit information about the rationale leading to the final form of the design.

Design rationale (DR) refers to the collection of information about the evolution of a
design product. This body of information explicitly records design activity and the
reasons for making choices and reasons for not making choices (de la Garza and

Ribeiro

 288

Alcantara 1997). Capturing and storing a DR is synonymous with explicitly
expressing the requirements, preferences, and reasoning implicitly embedded within
the design drawings and specifications. Access to DR information can help value
engineers to carry out the function analysis and properly formulate design alternatives
of a particular design and, therefore to perform their tasks more efficiently (de la
Garza and Alcantara 1997).

Several DR systems in design use case-based reasoning (CBR) as enabling technology
(Maher and Garza 1997, Shipman and McCall 1996, Yamamoto and Isoda 1986).
CBR formalizes a computational model of problem solving based on memory
organization and reminding.

The main focus of this paper is on the use of CBR and agent-base technology to store,
represent and make available DR information whenever the VE team needs them.
Aiming to improve the reliability and effectiveness of the VE study during design
phase is being developed by the author a CBR system here, designated by CAVA
(Computer Aid Value Analysis). This paper describes some of the most representative
DR systems in the construction industry using CBR and agent-based technology. It
proposes a CBR framework to help value engineers in formulating, evaluating and
developing cost-saving design alternatives of a current design.

SYSTEMS USING DESIGN RATIONALES
We briefly present some of the recent work on Artificial Intelligent (AI) systems using
DRs in construction. In the last few years, interest in DR has grown. A number of
systems in design and construction have been developed to date. They provide useful
lessons for researchers and developers of futures rationale systems. Table 1 presents a
selection of implementations that served as a base for CAVA.

Shared Design Rational Information Management (Shared–DRIM) system provides
dependency management and collaboration support during design process. Shared–
DRIM uses agent-based technology.

Softda system, for example, supports DRs reuse by acquiring the relationship about
designs and requirements and using it to index documents and codes. Cadre is a CBR
approach to architectural design. It stores DRs as cases for reuse support. Sibyl system
is another example of DRs reuse support system. Sibyl allows designers reuse the
rationales themselves. Janus combines CBR and agent-technology to store, represent
and access DRs. In Janus, when an agent encounters a human decision that is sub-
optimal according to its knowledge, it presents the designer with an appropriate
recommendation. Design Rationale Information Phase of Value Engineering (DRIVE)

Table 1: AI systems using DRs in construction
System Name Domain Service Provided by DRs
Shared–DRIM (Pena-Mora et al. 1995) Design Design support
Softda (Yamamoto and Isoda 1986) Design Reuse/redesign support
Cadre (Maher and Garza 1997) Architectural design Reuse/redesign support
Sibyl (Lee and Lai 1991) Design Reuse/redesign support
Janus (Shipman and McCall 1996) Architectural design Learning
DRIVE (Alcantara 1996) Value engineering Formulation of design

alternatives
CAVE (de la Garza and Alcantara 1997) Value engineering VE support
ADD (Garcia et al. 1994) Design –HVAC systems Design support
DRARS (de la Garza and Alcantara 1997) Building construction Documentation support

Case-based reasoning in V-E

 289

assists value engineers in generating suitable design alternatives by presenting
rationale about an existing design. DRIVE is part of a much larger Computer-Aided
Value Engineering (CAVE). Active Design Documents (ADD) system seeks to
capture rationale by using the computer as a “designer apprentice”. The domain of
ADD is the preliminary design of HVAC systems for commercial office buildings.
Design Rationale Authoring and Retrieval System (DRARS) uses the computer as a
database search engine to present DR information. DRARS uses objects called views,
goals, alternatives, claims, questions, answers, and versions.

MODELLING APPROACH
The modelling framework used to describe CAVA reflects a convergence of task-
oriented approaches (Chandrasekaran et al. 1992), the ontological analysis
methodology (Fernández et al. 1997), the Client Centred Approach (CCA) method
(Watson et al. 1992) and the CASE-METHOD (Kitano and Shimazu 1996). The
modelling framework describes the system into three levels. These levels are:

1. The Object-level: This level comprises manifold information and knowledge
sources, ranging from machine-readable formal representation to human-readable
informal representation.

2. The knowledge-level description: At knowledge level, the system is described in
terms of the tasks, problem solving methods, primitive inferences, knowledge
types and goals. This level also describes the structure of the knowledge needed by
the problem solving methods through the ontological analysis of the domain. The
product of this level is a task-method structure and the domain specific ontologies.

3. The symbol-level: where the system is implemented using a selected
programming environment. The products of this level are; i) the skeleton system;
ii) the demo system; and iii) the working system.

According to this framework, each level of description is a self-contained model of the
system. In this methodology the leveln implements the structure of the leveln-1.

Task method analysis
The task-method structure is the result of the task-method analysis carried out, in the
context of the characterization of the domain. Its principal elements are tasks, problem
solving methods, primitive inferences, and goals. The task-method structure provides
a specification of the system in terms of what the system should do and how the
system accomplishes its goals. Therefore, the task structure of CAVA consists of:
Tasks. A task is specified by: i) the task definition; and ii) its initial and goal states;
Problem solving methods. A problem solving method is specified by: i) a problem
space where the search for the solution takes place; ii) a set of sub-tasks or inferences
that can be used to transform the initial state of a task to the goal state; (iii) types of
knowledge it uses. At the highest level, the task structure sets up new DR
specification, find design alternatives and implement VE proposals as sub-tasks of the
VE task. Figure 1 presents a top view of task structure and describes how the case-
based method accomplishes the finding design alternatives task. Rectangles represent
tasks/subtasks and circles represent methods. The case-based method set up five sub-
tasks of the finding design alternatives task: design rationale recall; design
alternatives recall; design alternatives adaptation; design rationale adaptation;
design rationale storage. At the lowest level of the task structure one method is used
to perform a sub-task corresponding to another method.

Ribeiro

 290

KNOWLEDGE ACQUISITION
Each one of the sub-tasks described by the task-method structure is performed by
searching through a problem space from the initial state to the goal state. This search
requires knowledge in order to map the initial state to the goal state of the task being
solved. Acquiring and organizing this knowledge was an essential step in completing
the task structure. A number of methods were employed for knowledge acquisition.
Table 2 lists the knowledge acquisition methods employed at each stage of the
implementation cycle.

Figure 1:Task-method structure: a task-method sub-task decomposition and control strategy

Figure 2: Case acquisition process

Case-based reasoning in V-E

 291

The task-method analysis, revealed that much of the knowledge, (domain knowledge,
domain expertise and knowledge – know) required to perform each task of CAVA
comes from a number of sources such as: sketches, drawings, specifications and
abstract meetings of past designs; expertise and memory of designers and value
engineers experts; regulatory and technical texts; design files; and computer
databases. The acquisition of DRs in terms of cases was carried out in accordance
with the following basic phases based on the CASE-METHOD (Kitano and Shimazu
1996) (Figure 2): (i) Collection of seed cases into full case reports; (ii) Attribute-value
extraction; (iii) Hierarchy formation; (iv) Identification of the matching procedures;
(v) Adding seed cases to the case library; (vi) Testing and refining the case
representation and indexing scheme; (vii) Apply to new real world VE studies. The
main benefit of the approach to KA is that it integrates the implementation with
verification and validation of the case library.

IMPLEMENTATION
The implementation of CAVA was a staged process measured by the deliverables
produced at each stage. The current implementation stage of the system corresponds
to the skeleton system of the CCA method. The implemented system stores 10 DR
cases in the case base.

Programming environment
The key concerns in the early stage of the development process of CAVA was: how
represent the cases (DRs and modification plans), determining the similarity of the
cases, retrieving the similar cases, adapting a case, integrating cases with other
representational paradigms, and finally tailoring the interface for functionality and
user friendliness. Taking into account these issues, ART*Enterprise Version 2.0 Beat
R2 from Inference Corporation was chosen as the programming environment, and
Microsoft Windows 95 and PC computer were chosen as the implementation platform.
ART*Enterprise provides a very powerful programming environment that allows
developers to build hybrid applications. ART*Enterprise offers a variety of
representational paradigms including: objects supporting multiple inheritance,
encapsulation and polymorphism; rules; and cases. The CBR components in
ART*Enterprise provide facilities to quickly develop case-bases, the nearest
neighbour matching method and the impressive text handling.

Case-base organization
A case base is a structure where the cases are stored. Case memory organization refers
to the way cases are organized for access during retrieval. The system’s CBR
knowledge base comprises two case bases: the case base of DR cases and the case

Table 2: Methods employed at each system’s development cycle
Knowledge acquisition method Development Cycle
Postal survey Holistic

picture

Task-based method; text acquisition; DRs
and design drawings and files acquisition

 Skeleton
system

Task-based method; text acquisition; DRs
and past design drawings and files
acquisition

 Demo
system

Interviewing; DRs and past design
drawings and files acquisition

 Working
system

Ribeiro

 292

base of action schema plans. Each case base consists of a memory of cases describing
specific knowledge. We built the system’s case bases using ART*Enterprise CBR
tools. A case base is an instance of the object case-bases. The case-bases are organized
into a manageable structure to support efficient searching and matching. To build a
consistent structure for entering, retrieving and storing cases, the case bases had to
become uniform. For each case base, a distinct structure was implemented. For the
case base of DR cases gleaned from existing documentation (drawings and
specifications). For the case base of action schema plans, this structure was engineered
by interviewing designers and value engineers. We followed this structure in
organizing cases into each case base memory. The DR case’s size was an import
consideration in choosing the organization of the case base for DR cases. Because a
DR is a record of a complex set of experiences and decisions we divided DR cases
into smaller chunks –sub-cases- and their parts linked as a hierarchy. Therefore, the
case base for DR cases uses a hierarchically structured organization. The memory
organization of the other cases base is a list of pointer to cases. Each case base is an
ART*Enterprise object instance of the object case-bases. It comprises the case base
object and a case base index. The case-base index stores the information needed for
matching cases.

Representation of design rationale cases
Cases which comprise problems and solutions can be used to derive solution to new
problems, as in Cadre and Janus systems. The system’s CBR knowledge base contains
four kinds of cases: design rationales cases; and action schema plans. A DR case is
simply an ART*Enterprise object instance whose attributes constitute features of the
case. It is represented in the CBR knowledge base as a partonomic hierarchy because
a DR is a complex set of information and experiences. A partonomic hierarchy of a
DR case is a decomposition of DR information into a hierarchy of sub-cases.
Therefore, a DR case in the case base is represented as a hierarchy of sub-cases. This
decomposition allows the search and match to focus only on the relevant parts of a
DR. Processing only some knowledge linked to a case lets reasoning becomes more
efficient. The development of a hierarchically structures case base requires defining a
typical decomposition of a DR case. The system represents this decomposition
explicitly through domain models. Thus, we defined classes containing attributes for
those features and made the cases instances of those classes.

Case recall
ART*Enterprise gives one mechanism for retrieving cases: nearest neighbour
matching method to find the best matching case. CAVA integrates search and match.
It uses two retrieval algorithms for searching the case base: the hierarchical search for
searching the case base of DR cases; and the serial search algorithm for searching the
other case base. Both algorithms are combined with the nearest neighbour matching
method to retrieve the best matching cases from the case base memory. CAVA uses
the output of the new DR specification task as a probe into the case base to search for
DR cases that match the current problem as closely as possible. In particular, it
searches the DR cases using the hierarchical search algorithm, first looking for DR
cases exactly matching the specified DR, and then for partial matches. Exactly
matching are those whose indices (decision problem, element functions and element
performances) are the same as those specified for a new DR. Partial matches, in order
de preference, are DR cases matching one or two, or the three indices fully or
partially. Given a description of the new DR, the hierarchical search algorithm, using
the indices in the case base memory retrieves the most similar DR case to the current

Case-based reasoning in V-E

 293

situation by: (i) searching the case memory for a potentially similar DR cases; ii)
matching and ranking the most similar DR cases; iii) retrieving the DR case with
highest score.

Case adaptation
If case retrieval results in a DR case that only partially matches the specification of the
given DR, then the case-based method attempts to adapt the retrieved the DR case to
meet the current specification. The recall of best matching case provides the starting
point for generating a new solution. The system uses the rule-base transformation
method to perform the adaptation task. The rule-base transformation method has been
employed by a number CBR researchers to implement the adaptation task, an in Cadre
system. This method set up two sub-tasks: the evaluation of the selected case and the
modification of the solution. The evaluation task checks the feasibility of the solution
of the selected case. The modification task changes parts of the selected case. The
system uses a set of heuristic rules: (i) to evaluate the differences between the selected
DR case or sub-case and the new problem and the evaluation; (ii) and to modify the
solution of the selected DR case or sub-case. These rules are used to tweak the
parameters in a selected case to transform it into a solution to the new problem.

Case storage
Case storage is an important component of CAVA. It reflects the conceptual view of
what is represented in the case and take into account the its indices. If the case-based
method is successful in using previous DR cases to find the design alternatives to the
current design, then it stores the new DR case (modified) in its case base memory. The
new DR case is indexed using the data structure of the case-base index. In addition to
complete DR case, the system also stores DR sub-cases in its memory. Thus, the
system automatically acquires additional DR cases as it solves new problems.

Agent-based user interface
The user interacts through a form-based interface with a planning program –an agent-
that, taking the user’s goal as an input, search the agent’s case base for an action plan
to generate a sequence of actions achieving the goal. An agent is a problem solver that
perceives and acts to achieve a narrow set of goals within a specific virtual or real
environment.

The agent’s case base contains plans (cases) that are indexed by user’s goals and can
be retrieved according to the input parameters. The agent basically interacts with the
CBR components. Based on the retrieved sequence of actions, the agent, call the CBR
components of the system to achieve the user’s goal. The locus of agent automation is
on the executive tasks. CAVA agent’s model is based on the Norman’s (Norman
1986) reference model of semiautonomous agents (see Figure 3). Norman
characterizes the human computer interaction as the problem of bridging the twin
gulfs of execution and evaluation. The execution side of the cycle involves translating
a goal into a sequence of actions for achieving the goal. The evaluation side involves
using feedback from the domain to compare the result of the action to the goal.
Norman’s model provides a useful reference to build human computer interfaces
because it identifies the cognitive processes and the linkages between them that must
be supported for agent-based interfaces to succeed. CAVA’s agent model lies in
automating only the execution side to achieve a goal, leaving evaluation as at task for
the user. Thus, it comprises: (i) translating of a user’s goal into a intention to act; (ii)
translating this intention into a sequence of internal commands (action plan); (iii)
executing this sequence of commands; (iv) presenting the results to the user for

Ribeiro

 294

evaluation. The use of goals as input and action plans as agent primitives makes
system’s agent-based interface consistent with our reference model and consistent
with the definition of an agent as a process automating stages of this model. The
agent-based interface was implemented as a hierarchy of ART*Enterprise object
instances of the object class user-interface. The action plans are stored as cases and
indexed by user’s goals into the case base of action plans. They were implemented as
ART*Enterprise object instances of the object class case-bases.

LESSONS LEARNED
In modelling and implementing the system, a number of practical lessons were learnt
about building the system. They were grouped into the following main headlines:

Lesson 1: It is difficult to acquire and represent and entire DR as “a case” : A DR is
not simply “a case” but a complex set of information, experiences and decisions
resulting in a complex system. Rationales are embedded not only in formal documents
such as drawings and specifications, but also in informal media. In fact, almost
anything in a design process may be part of a design rationale as long as it is
represented and can be used to trace a reason for some aspect of VE study. The
unstructured nature of the recording makes it difficult to access exactly what is needed
and use that information in any quantitative way. This presents special requirements
for representing, indexing and presenting a DR case. These questions can be addressed
by using: i) a partonomic hierarchy of a DR case; ii) a flexible indexing format; iii) a
hierarchically structured case base; and iv) a presentation format that enables the user
to navigate both within and across the DR case.

Lesson 2: A DR case’s size is an important consideration for its representation : Not
every part of a DR is useful for a VE study. The task structure of the system and the
ontological analysis determines what to represent and how to represent the rationales
behind design process. DR can be divided into smaller chunks and their parts linked a
hierarchy or a network. AI offers different decomposition schemes to achieve this.

Lesson 3: The availability of DRs which provide specific knowledge is vital for the
success of a VE project using CBR: The development of system has shown that one of
the things that must be considered in building a system using CBR is whether or not
past cases containing specific knowledge are available in the domain. If these cases
are not easily available or are very expensive to collect building a system will be

Figure 3: The Norman’ reference model of semiautonomous agent

Case-based reasoning in V-E

 295

difficult. In problem solving tasks, cases must provide knowledge related to specific
design experiences which can be used to build solutions for new problems in similar
situations. The ability of the system to retrieve that match with a high similarity value
and its performance improves with the number of appropriate cases.

CONCLUSIONS AND FUTURE WORK
The present research has indicated that DRs can help VE team in formulating,
evaluating and developing design alternatives of a current design. Within the limits of
this paper, a review of recent work on DR systems in construction has been carried out
illustrating the different approaches advocated by several researches. The different
frameworks to represent and access DR have been covered. A CBR framework in
support of VE is developed. Within the development process of the system, a multiple
level approach to model the system has been presented. The task-method structure
provided a good specification for designing, implementing and evaluating the system.
It shows how the case-based method solves the tasks of finding, evaluating and
developing design alternatives. The case acquisition process, followed by validation
and refinement, provided a vocabulary for representing, structuring and indexing DR
cases in the case base. Much work remains in order to obtain a finished application.
Future work include: acquiring and storing more DR cases; refining the representation
structure for DR cases; refining the case indexing; improving the retrieval and
matching mechanisms; and implementing the user-interface.

REFERENCES
Alcantara, P.T. (1996) Development of a computer-understandable representation of design

rational to support value engineering. Unpublished PhD Dissertation, Virginia Tech,
Blacksburg, Va.

Chandrasekaran, B., Johnson T. and Smith J. (1992) Task-Structure Analysis for Knowledge
Modelling. Communications of the ACM, 39(9), 124–138.

Connaughton, J.N. and Green, S.D. (1996) Value Management in construction: a client’s
guide. London: Construction Industry Research and Information Association

de la Garza, J.M. and Alcantara, P.T. (1997) Using Parameter Dependency Network To
Represent Design Rationale. Journal of Computing in Civil Engineering, ASCE,
2(11), 102–112.

Fernández, M., Gómez-Péres, A. and Juristo, N. (1997) METHONLOGY: from ontological
art towards ontological engineering. In: Procs. AAAI Spring Symposium Series,
Menlo Park, CA: AAAI Press, 33–40.

Garcia, A.C.B., Howard, H.C. and Stefik, M.J. (1994) Improving design and documentation
by using partially automated synthesis. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (AIEDDAM), 8(4), 335–354.

Kitano, H. and Shimazu, H. (1996) The experience-sharing architecture: a case study in
corporate-wide case-based software quality control. In: Leak, D. (ed.) Case-based
reasoning: experiences, lessons, and future directions, AAAI, 235–268.

Lee, J. and Lai, K.Y. (1991) What’s in design rationale? Journal of Human-Computer
Interaction. 6(3), 251–280.

Maher, M. and Garza, A.J.S. (1997) Case-based reasoning in design. IEEE Expert. 12(2), 34–
41.

Ribeiro

 296

Norman, D. (1986) Cognitive engineering. In: Norman, D. and Draper, S. (eds.) User-centred
system design: new perspective on human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum.

Norton, B.R. and McElligott, W.C. (1995) Value management in construction: practical
guide. London: Macmillan.

Pena-Mora, F., Sriram, D. and Logcher, R. (1995) Design rationale for computer-supported
conflict mitigation. Journal of Computing in Civil Engineering, ASCE, 9(1), 57–72.

Shipman, F. and McCall, R. (1996) Integrating different perspectives on design rationale:
supporting the emergence of design rationale from design. Communication, Technical
Report 96-001, Centre for the Study of Digital Libraries, Texas A&M University,
College Station, Texas.

Yamamoto, S. and Isoda, S. (1986) SOFTDA: A reuse-oriented software design system. In:
Procs Compasac, Los Alamitos, CA: IEEE Computer Society Press. 284–290.

Watson, I., Basden, A. and Brandon, P. (1992) The client-centred approach: expert systems
development. Expert Systems: The International Journal of Knowledge Engineering,
9(4), 181–188.

