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Value Engineering (VE) is the title given to a set of value techniques applied during 
the design or ‘engineering’ phases of a construction project that has its origins in the 
US manufacturing industry. Currently, value engineers attempt to infer design 
rationale information from drawings and specifications for carrying out the value 
engineering analysis. Access to design rationales can help value engineers in different 
ways. Case-based reasoning is a technology for problem solving based on recall and 
reuse of specific experiences. Case-based reasoning offers techniques for representing 
and managing complex design rationale cases, augmenting a set of specific design 
experiences with generalized knowledge and formalizing a typically informal body of 
knowledge. Agent-based systems technology offers modularity and techniques for 
handling human-agent interaction, managing and searching information. This paper 
describes the utility of design rationales in value engineering. It examines the 
combination of case-based reasoning and agent-based technology to support value 
engineering analysis. Finally, it proposes a case-based framework in value 
engineering during design phase. 
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INTRODUCTION 
Value Engineering (VE) was developed by Lawrence Miles in 1940s in the United 
States of America. The combined growth in VE practice through different US 
government agencies and private industry led to the establishment of the Society of 
American Value Engineers (SAVE) in 1958, a professional body formed to foster VE 
(Norton and McElligott 1995). Over the past decade, there has been a trend towards 
applying value techniques at all stages of the project life cycle. Therefore, the term 
value management (VM) has become a blanket term that covers all value techniques 
whether they entails Value Planning, Value Engineering or Value Analysis. A recent 
development in VM for construction industry (Connaughton and Green 1996) 
recommends that VM should incorporate VE. 

A VE study during design attempts to identify unnecessary costs in design parts and 
components and suggest design alternatives (for those design items needing change) 
to reduce life-cycle costs without reducing the quality, function and performance of a 
building design (de la Garza and Alcantara 1997). Design involves the creation of a 
set of documents describing a yet unconstructed product. These documents contain 
implicit information about the rationale leading to the final form of the design. 

Design rationale (DR) refers to the collection of information about the evolution of a 
design product. This body of information explicitly records design activity and the 
reasons for making choices and reasons for not making choices (de la Garza and 
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Alcantara 1997). Capturing and storing a DR is synonymous with explicitly 
expressing the requirements, preferences, and reasoning implicitly embedded within 
the design drawings and specifications. Access to DR information can help value 
engineers to carry out the function analysis and properly formulate design alternatives 
of a particular design and, therefore to perform their tasks more efficiently (de la 
Garza and Alcantara 1997). 

Several DR systems in design use case-based reasoning (CBR) as enabling technology 
(Maher and Garza 1997, Shipman and McCall 1996, Yamamoto and Isoda 1986). 
CBR formalizes a computational model of problem solving based on memory 
organization and reminding. 

The main focus of this paper is on the use of CBR and agent-base technology to store, 
represent and make available DR information whenever the VE team needs them. 
Aiming to improve the reliability and effectiveness of the VE study during design 
phase is being developed by the author a CBR system here, designated by CAVA 
(Computer Aid Value Analysis). This paper describes some of the most representative 
DR systems in the construction industry using CBR and agent-based technology. It 
proposes a CBR framework to help value engineers in formulating, evaluating and 
developing cost-saving design alternatives of a current design. 

SYSTEMS USING DESIGN RATIONALES 
We briefly present some of the recent work on Artificial Intelligent (AI) systems using 
DRs in construction. In the last few years, interest in DR has grown. A number of 
systems in design and construction have been developed to date. They provide useful 
lessons for researchers and developers of futures rationale systems. Table 1 presents a 
selection of implementations that served as a base for CAVA. 

Shared Design Rational Information Management (Shared–DRIM) system provides 
dependency management and collaboration support during design process. Shared–
DRIM uses agent-based technology. 

Softda system, for example, supports DRs reuse by acquiring the relationship about 
designs and requirements and using it to index documents and codes. Cadre is a CBR 
approach to architectural design. It stores DRs as cases for reuse support. Sibyl system 
is another example of DRs reuse support system. Sibyl allows designers reuse the 
rationales themselves. Janus combines CBR and agent-technology to store, represent 
and access DRs. In Janus, when an agent encounters a human decision that is sub-
optimal according to its knowledge, it presents the designer with an appropriate 
recommendation. Design Rationale Information Phase of Value Engineering (DRIVE) 

Table 1: AI systems using DRs in construction 
System Name Domain Service Provided by DRs 
Shared–DRIM (Pena-Mora et al. 1995) Design Design support  
Softda (Yamamoto and Isoda 1986) Design Reuse/redesign support 
Cadre (Maher and Garza 1997) Architectural design Reuse/redesign support 
Sibyl (Lee and Lai 1991) Design Reuse/redesign support 
Janus (Shipman and McCall 1996) Architectural design Learning 
DRIVE (Alcantara 1996) Value engineering Formulation of design 

alternatives  
CAVE (de la Garza and Alcantara 1997) Value engineering VE support 
ADD (Garcia et al. 1994) Design –HVAC systems Design support  
DRARS (de la Garza and Alcantara 1997) Building construction Documentation support 
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assists value engineers in generating suitable design alternatives by presenting 
rationale about an existing design. DRIVE is part of a much larger Computer-Aided 
Value Engineering (CAVE). Active Design Documents (ADD) system seeks to 
capture rationale by using the computer as a “designer apprentice”. The domain of 
ADD is the preliminary design of HVAC systems for commercial office buildings. 
Design Rationale Authoring and Retrieval System (DRARS) uses the computer as a 
database search engine to present DR information. DRARS uses objects called views, 
goals, alternatives, claims, questions, answers, and versions. 

MODELLING APPROACH 
The modelling framework used to describe CAVA reflects a convergence of task-
oriented approaches (Chandrasekaran et al. 1992), the ontological analysis 
methodology (Fernández et al. 1997), the Client Centred Approach (CCA) method 
(Watson et al. 1992) and the CASE-METHOD (Kitano and Shimazu 1996). The 
modelling framework describes the system into three levels. These levels are: 

1. The Object-level: This level comprises manifold information and knowledge 
sources, ranging from machine-readable formal representation to human-readable 
informal representation. 

2. The knowledge-level description: At knowledge level, the system is described in 
terms of the tasks, problem solving methods, primitive inferences, knowledge 
types and goals. This level also describes the structure of the knowledge needed by 
the problem solving methods through the ontological analysis of the domain. The 
product of this level is a task-method structure and the domain specific ontologies. 

3. The symbol-level: where the system is implemented using a selected 
programming environment. The products of this level are; i) the skeleton system; 
ii) the demo system; and iii) the working system. 

According to this framework, each level of description is a self-contained model of the 
system. In this methodology the leveln implements the structure of the leveln-1. 

Task method analysis 
The task-method structure is the result of the task-method analysis carried out, in the 
context of the characterization of the domain. Its principal elements are tasks, problem 
solving methods, primitive inferences, and goals. The task-method structure provides 
a specification of the system in terms of what the system should do and how the 
system accomplishes its goals. Therefore, the task structure of CAVA consists of: 
Tasks. A task is specified by: i) the task definition; and ii) its initial and goal states; 
Problem solving methods. A problem solving method is specified by: i) a problem 
space where the search for the solution takes place; ii) a set of sub-tasks or inferences 
that can be used to transform the initial state of a task to the goal state; (iii) types of 
knowledge it uses. At the highest level, the task structure sets up new DR 
specification, find design alternatives and implement VE proposals as sub-tasks of the 
VE task. Figure 1 presents a top view of task structure and describes how the case-
based method accomplishes the finding design alternatives task. Rectangles represent 
tasks/subtasks and circles represent methods. The case-based method set up five sub-
tasks of the finding design alternatives task: design rationale recall; design 
alternatives recall; design alternatives adaptation; design rationale adaptation; 
design rationale storage. At the lowest level of the task structure one method is used 
to perform a sub-task corresponding to another method. 
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KNOWLEDGE ACQUISITION 
Each one of the sub-tasks described by the task-method structure is performed by 
searching through a problem space from the initial state to the goal state. This search 
requires knowledge in order to map the initial state to the goal state of the task being 
solved. Acquiring and organizing this knowledge was an essential step in completing 
the task structure. A number of methods were employed for knowledge acquisition. 
Table 2 lists the knowledge acquisition methods employed at each stage of the 
implementation cycle. 

Figure 1:Task-method structure: a task-method sub-task decomposition and control strategy 

 
Figure 2: Case acquisition process 
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The task-method analysis, revealed that much of the knowledge, (domain knowledge, 
domain expertise and knowledge – know) required to perform each task of CAVA 
comes from a number of sources such as: sketches, drawings, specifications and 
abstract meetings of past designs; expertise and memory of designers and value 
engineers experts; regulatory and technical texts; design files; and computer 
databases. The acquisition of DRs in terms of cases was carried out in accordance 
with the following basic phases based on the CASE-METHOD (Kitano and Shimazu 
1996) (Figure 2): (i) Collection of seed cases into full case reports; (ii) Attribute-value 
extraction; (iii) Hierarchy formation; (iv) Identification of the matching procedures; 
(v) Adding seed cases to the case library; (vi) Testing and refining the case 
representation and indexing scheme; (vii) Apply to new real world VE studies. The 
main benefit of the approach to KA is that it integrates the implementation with 
verification and validation of the case library. 

IMPLEMENTATION 
The implementation of CAVA was a staged process measured by the deliverables 
produced at each stage. The current implementation stage of the system corresponds 
to the skeleton system of the CCA method. The implemented system stores 10 DR 
cases in the case base. 

Programming environment 
The key concerns in the early stage of the development process of CAVA was: how 
represent the cases (DRs and modification plans), determining the similarity of the 
cases, retrieving the similar cases, adapting a case, integrating cases with other 
representational paradigms, and finally tailoring the interface for functionality and 
user friendliness. Taking into account these issues, ART*Enterprise Version 2.0 Beat 
R2 from Inference Corporation was chosen as the programming environment, and 
Microsoft Windows 95 and PC computer were chosen as the implementation platform. 
ART*Enterprise provides a very powerful programming environment that allows 
developers to build hybrid applications. ART*Enterprise offers a variety of 
representational paradigms including: objects supporting multiple inheritance, 
encapsulation and polymorphism; rules; and cases. The CBR components in 
ART*Enterprise provide facilities to quickly develop case-bases, the nearest 
neighbour matching method and the impressive text handling. 

Case-base organization 
A case base is a structure where the cases are stored. Case memory organization refers 
to the way cases are organized for access during retrieval. The system’s CBR 
knowledge base comprises two case bases: the case base of DR cases and the case 

Table 2: Methods employed at each system’s development cycle 
Knowledge acquisition method Development Cycle 
Postal survey  Holistic 

picture 
   

Task-based method; text acquisition; DRs 
and design drawings and files acquisition 

 Skeleton 
system 

  

Task-based method; text acquisition; DRs 
and past design drawings and files 
acquisition 

  Demo 
system 

 

Interviewing; DRs and past design 
drawings and files acquisition 

   Working 
system 
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base of action schema plans. Each case base consists of a memory of cases describing 
specific knowledge. We built the system’s case bases using ART*Enterprise CBR 
tools. A case base is an instance of the object case-bases. The case-bases are organized 
into a manageable structure to support efficient searching and matching. To build a 
consistent structure for entering, retrieving and storing cases, the case bases had to 
become uniform. For each case base, a distinct structure was implemented. For the 
case base of DR cases gleaned from existing documentation (drawings and 
specifications). For the case base of action schema plans, this structure was engineered 
by interviewing designers and value engineers. We followed this structure in 
organizing cases into each case base memory. The DR case’s size was an import 
consideration in choosing the organization of the case base for DR cases. Because a 
DR is a record of a complex set of experiences and decisions we divided DR cases 
into smaller chunks –sub-cases- and their parts linked as a hierarchy. Therefore, the 
case base for DR cases uses a hierarchically structured organization. The memory 
organization of the other cases base is a list of pointer to cases. Each case base is an 
ART*Enterprise object instance of the object case-bases. It comprises the case base 
object and a case base index. The case-base index stores the information needed for 
matching cases. 

Representation of design rationale cases 
Cases which comprise problems and solutions can be used to derive solution to new 
problems, as in Cadre and Janus systems. The system’s CBR knowledge base contains 
four kinds of cases: design rationales cases; and action schema plans. A DR case is 
simply an ART*Enterprise object instance whose attributes constitute features of the 
case. It is represented in the CBR knowledge base as a partonomic hierarchy because 
a DR is a complex set of information and experiences. A partonomic hierarchy of a 
DR case is a decomposition of DR information into a hierarchy of sub-cases. 
Therefore, a DR case in the case base is represented as a hierarchy of sub-cases. This 
decomposition allows the search and match to focus only on the relevant parts of a 
DR. Processing only some knowledge linked to a case lets reasoning becomes more 
efficient. The development of a hierarchically structures case base requires defining a 
typical decomposition of a DR case. The system represents this decomposition 
explicitly through domain models. Thus, we defined classes containing attributes for 
those features and made the cases instances of those classes. 

Case recall 
ART*Enterprise gives one mechanism for retrieving cases: nearest neighbour 
matching method to find the best matching case. CAVA integrates search and match. 
It uses two retrieval algorithms for searching the case base: the hierarchical search for 
searching the case base of DR cases; and the serial search algorithm for searching the 
other case base. Both algorithms are combined with the nearest neighbour matching 
method to retrieve the best matching cases from the case base memory. CAVA uses 
the output of the new DR specification task as a probe into the case base to search for 
DR cases that match the current problem as closely as possible. In particular, it 
searches the DR cases using the hierarchical search algorithm, first looking for DR 
cases exactly matching the specified DR, and then for partial matches. Exactly 
matching are those whose indices (decision problem, element functions and element 
performances) are the same as those specified for a new DR. Partial matches, in order 
de preference, are DR cases matching one or two, or the three indices fully or 
partially. Given a description of the new DR, the hierarchical search algorithm, using 
the indices in the case base memory retrieves the most similar DR case to the current 
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situation by: (i) searching the case memory for a potentially similar DR cases; ii) 
matching and ranking the most similar DR cases; iii) retrieving the DR case with 
highest score. 

Case adaptation 
If case retrieval results in a DR case that only partially matches the specification of the 
given DR, then the case-based method attempts to adapt the retrieved the DR case to 
meet the current specification. The recall of best matching case provides the starting 
point for generating a new solution. The system uses the rule-base transformation 
method to perform the adaptation task. The rule-base transformation method has been 
employed by a number CBR researchers to implement the adaptation task, an in Cadre 
system. This method set up two sub-tasks: the evaluation of the selected case and the 
modification of the solution. The evaluation task checks the feasibility of the solution 
of the selected case. The modification task changes parts of the selected case. The 
system uses a set of heuristic rules: (i) to evaluate the differences between the selected 
DR case or sub-case and the new problem and the evaluation; (ii) and to modify the 
solution of the selected DR case or sub-case. These rules are used to tweak the 
parameters in a selected case to transform it into a solution to the new problem. 

Case storage 
Case storage is an important component of CAVA. It reflects the conceptual view of 
what is represented in the case and take into account the its indices. If the case-based 
method is successful in using previous DR cases to find the design alternatives to the 
current design, then it stores the new DR case (modified) in its case base memory. The 
new DR case is indexed using the data structure of the case-base index. In addition to 
complete DR case, the system also stores DR sub-cases in its memory. Thus, the 
system automatically acquires additional DR cases as it solves new problems. 

Agent-based user interface 
The user interacts through a form-based interface with a planning program –an agent- 
that, taking the user’s goal as an input, search the agent’s case base for an action plan 
to generate a sequence of actions achieving the goal. An agent is a problem solver that 
perceives and acts to achieve a narrow set of goals within a specific virtual or real 
environment. 

The agent’s case base contains plans (cases) that are indexed by user’s goals and can 
be retrieved according to the input parameters. The agent basically interacts with the 
CBR components. Based on the retrieved sequence of actions, the agent, call the CBR 
components of the system to achieve the user’s goal. The locus of agent automation is 
on the executive tasks. CAVA agent’s model is based on the Norman’s (Norman 
1986) reference model of semiautonomous agents (see Figure 3). Norman 
characterizes the human computer interaction as the problem of bridging the twin 
gulfs of execution and evaluation. The execution side of the cycle involves translating 
a goal into a sequence of actions for achieving the goal. The evaluation side involves 
using feedback from the domain to compare the result of the action to the goal. 
Norman’s model provides a useful reference to build human computer interfaces 
because it identifies the cognitive processes and the linkages between them that must 
be supported for agent-based interfaces to succeed. CAVA’s agent model lies in 
automating only the execution side to achieve a goal, leaving evaluation as at task for 
the user. Thus, it comprises: (i) translating of a user’s goal into a intention to act; (ii) 
translating this intention into a sequence of internal commands (action plan); (iii) 
executing this sequence of commands; (iv) presenting the results to the user for 
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evaluation. The use of goals as input and action plans as agent primitives makes 
system’s agent-based interface consistent with our reference model and consistent 
with the definition of an agent as a process automating stages of this model. The 
agent-based interface was implemented as a hierarchy of ART*Enterprise object 
instances of the object class user-interface. The action plans are stored as cases and 
indexed by user’s goals into the case base of action plans. They were implemented as 
ART*Enterprise object instances of the object class case-bases. 

LESSONS LEARNED 
In modelling and implementing the system, a number of practical lessons were learnt 
about building the system. They were grouped into the following main headlines: 

Lesson 1: It is difficult to acquire and represent and entire DR as “a case” : A DR is 
not simply “a case” but a complex set of information, experiences and decisions 
resulting in a complex system. Rationales are embedded not only in formal documents 
such as drawings and specifications, but also in informal media. In fact, almost 
anything in a design process may be part of a design rationale as long as it is 
represented and can be used to trace a reason for some aspect of VE study. The 
unstructured nature of the recording makes it difficult to access exactly what is needed 
and use that information in any quantitative way. This presents special requirements 
for representing, indexing and presenting a DR case. These questions can be addressed 
by using: i) a partonomic hierarchy of a DR case; ii) a flexible indexing format; iii) a 
hierarchically structured case base; and iv) a presentation format that enables the user 
to navigate both within and across the DR case. 

Lesson 2: A DR case’s size is an important consideration for its representation : Not 
every part of a DR is useful for a VE study. The task structure of the system and the 
ontological analysis determines what to represent and how to represent the rationales 
behind design process. DR can be divided into smaller chunks and their parts linked a 
hierarchy or a network. AI offers different decomposition schemes to achieve this. 

Lesson 3: The availability of DRs which provide specific knowledge is vital for the 
success of a VE project using CBR: The development of system has shown that one of 
the things that must be considered in building a system using CBR is whether or not 
past cases containing specific knowledge are available in the domain. If these cases 
are not easily available or are very expensive to collect building a system will be 

 
Figure 3: The Norman’ reference model of semiautonomous agent 
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difficult. In problem solving tasks, cases must provide knowledge related to specific 
design experiences which can be used to build solutions for new problems in similar 
situations. The ability of the system to retrieve that match with a high similarity value 
and its performance improves with the number of appropriate cases. 

CONCLUSIONS AND FUTURE WORK 
The present research has indicated that DRs can help VE team in formulating, 
evaluating and developing design alternatives of a current design. Within the limits of 
this paper, a review of recent work on DR systems in construction has been carried out 
illustrating the different approaches advocated by several researches. The different 
frameworks to represent and access DR have been covered. A CBR framework in 
support of VE is developed. Within the development process of the system, a multiple 
level approach to model the system has been presented. The task-method structure 
provided a good specification for designing, implementing and evaluating the system. 
It shows how the case-based method solves the tasks of finding, evaluating and 
developing design alternatives. The case acquisition process, followed by validation 
and refinement, provided a vocabulary for representing, structuring and indexing DR 
cases in the case base. Much work remains in order to obtain a finished application. 
Future work include: acquiring and storing more DR cases; refining the representation 
structure for DR cases; refining the case indexing; improving the retrieval and 
matching mechanisms; and implementing the user-interface. 
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