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Machine learning (ML)-supported accident prediction models appear as an alternative 
to the much older accident causation models (ACMs).  ACMs represent a 
simplification of accident processes and resulted loss and play an important role in 
accident investigations and identifying potential risk factors.  This effort investigates 
ACMs and ML results of accident reports analysis in relation to each other and aims 
at comparing the latter based on their level of causes, the relationship between causes, 
and the predictability of severity.  A framework of understanding of these main 
processes and their challenges is provided, which is also used as a methodological 
framework for the comparison.  The comparison is based on a desk study of literature 
and material on the two types of models.  ACMs are different in typology, levels of 
causes, and the logic through which the analysis of the events that have taken place is 
conducted.  Many ML prediction models in construction not only provide predictions 
but also result into structures of features which work as predictors, e.g., decision trees.  
ACMs and ML are different in the task they perform.  ML models in the literature are 
focused on predicting the severity of an event while missing the identification of 
prevention measures.  ACMs focus on the occurrence of unwanted events and lack the 
ranking of important features.  Finally, ML analysis of accident reports need ACMs as 
a theory to shift focus to risks instead of severity, while interpretable ML algorithms 
(e.g., RF) appear more capable of complex representations of contributing factors.  
An unsolved issue is the random element involved in most accident processes. 
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INTRODUCTION 
Recently, there has been a noticeable increase in the number of publications about the 

topic of ML in the construction industry, including occupational accidents and safety 
during construction (Xu et al., 2021), and structural health monitoring and job safety 

management (Hou et al., 2021).  This trend was also observed in publications on 
applied ML for the analysis of archival data and surveys of work-related accidents 

(Sarkar and Maiti 2020).  On the other hand, accident causation models have guided 
analysis and learning from accidents for many years.  ACMs play an essential role in 
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identifying causes and processes in which events take place (Kjellen and Albrechtsen 

2017, Fu et al., 2020). 

ML and ACMs have been equally criticized.  ML was found to be shortcoming in 

interpretability, data quality concerns, the need for concrete use cases and the lack of 
required integration with domain and expert knowledge (Vallmuur 2015, Bilal et al., 
2016), as well as generalizability (Xu et al., 2021, Sarkar and Maiti 2020).  ACMs are 
different in typology and levels of analysis and have been questioned in terms of their 

components, accident path representation and their applicability (Fu et al., 2020). 

So far, the literature on ML applications within the domain of accidents reports has 

been focused on analysing and experimenting with algorithms without the perspective 
of ACMs as a theorical lens.  The role of the theory of ACMs is not being adequately 

addressed in the current literature.  The structure and components of ACMs provide 
attention to the important factors for prevention purposes and guide the process of ML 

analysis and use cases.  Similarly, ACMs have not been examined in relation to the 
contribution of ML applications in understanding accidents.  The availability of large 

volumes of data has the potential of not only unfolding causes behind accidents but 
also contributing to the development of added value to ACMs.  Therefore, this 

research will investigate the role of ACMs as a theoretical framework for the ML 
results of analysed reported accidents in the construction industry, as well as what can 

be learned about ACMs from ML.  We conduct a comparative desk study of the 
literature covering ML application to accident reports in the construction industry and 

ACMs in terms of their level of causes, the relationship between causes, and the 
predictability of severity.  This will contribute to conceptualizing ML models in the 

lens of ACMs. 

METHOD 
The article is based on a desk study of the literature of applied ML in the analysis of 

construction accident reports and ACMs.  The literature review and discussion were 
done in a synthesized problematization method (Alvesson and Sandberg 2011).  The 

ML models are based on a literature review and the systemization of the purpose of 
the ML, the included features, and the ranking of important factors.  ML has been 

applied for the prediction of severity, the classification of accident causes, and the 
extraction of information from textual data.  The themes are presented for an in-depth 

analysis.  ACMs were selected based on crossing the models which were reviewed by 
Kjellen and Albrechtsen (2017), Fu et al., (2020) and Woolley et al., (2019).  Three 

models were selected, based on the types of ACMs and their common application in 

the construction industry. 

Accident Causation Models 

ACMs are simplified representations of the process in which risk result in accidents 

and loss (Kjellen and Albrechtsen 2017).  ACMs have been used in accident 
investigation and analysis to uncover how and why accidents happen.  In the 

construction industry and in occupational accidents contexts, there are a few models 
that have been commonly applied.  Woolley et al., (2019) reviewed the most common 

accident causation theories in the building industry.  The review revealed that linear 
models are more dominantly used in the construction context when compared to 

nonlinear system-based models.  The linear models included ones such as the Domino 
Model.  The models that the Woolley et al., (2019) refer to as complex linear and 
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organizational factors-related, include the Swiss Cheese Model (SCM), and the 

Systems Model of Causation. 

Hopkins (2014) reviewed the paradox of major accident investigations.  The author 

distinguished between two meanings of accident causes: sufficient causes and 
necessary ones.  Necessary cause or the but-for one is the factor that without having 

existed, an accident would not have happened.  Moreover, Hopkins (2014) illustrated 
that most ACMs are formulated within this logic (such as the SCM) and that the but-

for logic works best with technical factors, but it becomes harder to assign a necessary 
cause with organizational distant factors because they are subject to expert judgement.  

Woolley et al., (2019) also found that distant regulatory and association’s related 
factors were not present in the construction context.  Although accident analysis is 

done for the purpose of learning, they do not seem to be designed to make 
recommendation for future accident prevention, nor do they identify relationships 

between company, management, and staff levels as higher levels of causes.  This 
article will focus on the SCM as a linear model, and the Bow-Tie model as energy-

based model (Fu et al., 2020). 

The Swiss Cheese Model (SCM) 

SCM (Reason 1997) is an energy-based model, according to the classification of 
Kjellen and Albrechtsen (2017), but categorized as a linear model in the review by Fu 
et al., (2020).  A linear model is one that consists of stages or levels of causes and 
corresponds to a chain of logical sequence that can be clearly examined.  The 

paradigm of SCM (see Fig 1) explains accidents by giving an understanding of event 
occurrence through barrier failures all the way, starting from organizational factors to 

unsafe acts.  Errors and violations function as active failures at the end of the system, 
while the latent conditions are the ones that exist but are undetected because the 

barrier had not been activated.  The logic of the SCM is that accidents happen when a 
combination failure exists on all levels together at once.  If a barrier was active at one 

of the levels, the accident could have been prevented.  The first level starts with top 
level decision makers, followed by designers and planners, line management, 

operations and maintenance, and local faults (Fu et al., 2020). 

  

Fig 1: SCM, Fu et al., (2020)                       Fig 2: STAMP, Fu et al., (2020)  

Systems-Theoretic Accident Model and Processes (STAMP) 

The STAMP model (see Fig 2) is known to belong to the system-based causation 
models (Kjellen and Albrechtsen 2017), and is categorized as nonlinear (Fu et al., 
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2020).  This model’s paradigm views accidents as being caused by dynamic 

equilibrium of system control that exist within an adaptive socio-technical system 
(Leveson 2004).  The model consists of three key components (constrains, control 

loops and process models, and socio-technical levels of control) (Leveson 2004).  
Constraints are enforced throughout the interactions of the hierarchy of the system’s 

operations and travel downwards for operation control.  Moreover, the model is 
characterized by feedback loops that travel upward through the levels of the hierarchy 

of the system.  The levels of system included are inspired by Rasmussen's (1997) 
socio-technical system models but with adding a parallel side that is concerned with 

system development beside the system operation.  Accidents in the STAMP model are 
caused by failure at one of the main components of the models: either safety 

constraints are not adequately enforced (which might be influenced by a lack of 
proper control and process plan, or inadequate coordination), or accidents can be 

caused by inadequate control execution or feedback information (Fu et al., 2020). 

The BOW-Tie Model 

The BOW-Tie model (see Fig 3) is a practical analysis model.  The model analysis 
starts by identifying a hazard that exists in the organization or the surrounding 

environment.  The hazard is in central connection to the second component of the 
model, which is the top event that is at the centre of the BOW-Tie.  The model is built 

around this top event as threats and consequences should be identified.  Accordingly, 
prevention barriers are then identified on the left side of the top event to combat their 

corresponding threats.  In the same fashion, recovery barriers are placed after the top 
event.  Threats are defined as whatever causes the top event to occur, and the more 

elaborate the analysis of threats, the more consequences are taken in consideration.  
The model suggests that barriers prevent the threat from causing the top event to 

happen, or in the case of that happening indeed, the consequences could still be 
prevented (Fu et al., 2020).  Interestingly, the model does not assume that prevention 

barriers always function, but there might be a failure that is caused by an escalation 

factor. 

 

 Fig 3: BOW-Tie, Fu et al., (2020) 

The three chosen models represent a variety of common models in accident causation 
and understanding.  The SCM is levelled and assumes failure on all levels to cause the 

accident.  The BOW-Tie model assumes failure to prevent a particular threat to cause 
the accident.  The STAMP model is more procedural and assumes that safety 

constraints and feedback loops are needed to be enforced to prevent hazardous events. 
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Machine Learning and Accident Data Analysis 

The purposes of ML analysis within the domain of accident reports can (based on our 
conception) be divided in two different categories: A classification of accident 

severity, and a classification of accident type and information retrieval.  The 
predictive ML models in both categories are further analysed below in terms of the 

purpose of the model, algorithms they utilized, the factors that were involved in the 
ML modelling, and their importance ranking compared to the output variables.  The 

results of the review are summarily presented in Table 1. 

Classification of Accident Severity 

ML algorithms 
Shrestha et al., (2020), analysed the accident reports using ML as a method for the 

classification of severity and accident-related features.  The multiclass support vector 
machines (SVM) and the results were organized into four different categories 

(upstream precursors, energy source, accident type and injury severity) (Shrestha et 
al., 2020).  Zhu et al., (2021) used accident investigations which were organized into 

six subsystems, 16 factors, and 39 subfactors (see Table 1).  Ayhan and Tokdemir 
(2019) used artificial neural networks (ANNs) and conventional multiple regression 

for accident outcome prediction using a total of 149 attributes which were discretised 
into the main causes’ categories (see Table 1).  The accident outcomes were 

categorized into 7 different classes (namely, At Risk Behaviour, Near Miss, The 
Incident with Partial Failure, The Incident requiring First Aid, The Incident requiring 

Medical Intervention, Lost Workday Cases, Fatalities) (Ayhan and Tokdemir 2019). 

In terms of models' accuracy, considerable differences were found between training 

and testing accuracy; the testing accuracy dropped by 50% for the fatality class 
(Ayhan and Tokdemir 2019).  Zhu et al.'s (2021) best accuracy results were achieved 

by the AutoML algorithm, with 70% accuracy.  However, a misclassification problem 
was observed when the algorithm mistakenly classifies a large accident as a minor one 

Zhu et al.'s (2021).  Choi et al., (2020) used the value of the Area Under the Receiver 
Operating Characteristic Curve (AUROCC) metric; the RF achieved 0.9198 which is 

considered as excellent, as the ideal value of AUROCC is 1. 

Factors and feature ranking 
Shrestha et al., (2020) coupled accident causes with accident severity.  For example, 
pre-existing medical conditions were found to result in the most fatalities, although 

they happen in lower frequencies.  Another approach was to rank features according to 
the level of importance and in relation to accident consequence severity, by using the 

Pearson correlation coefficient, Random Forest (RF) and principle component analysis 
(PCA) (Zhu et al., 2021).  Feature ranking resulted in three different rankings in each 

of the latter methods, however, the common features are the type of accident (i.e., fall, 
electrocution, etc), Accident reporting and handling, Training and examination, and 

Safety culture (Zhu et al., 2021).  Choi et al., (2020)'s RF ranking of factors showed 
that the month in which accidents happen is the highest-ranking factor, followed by 

the employment size, age, day, and service length.  However, the employment size 
was observed to be highly ranked in all algorithms.  The latter factor was showing to 

be correlated to high accident rate in smaller projects while the level of fatality being 
increased in the project over 2000 employees (Choi et al., 2020).  Ayhan's and 

Tokdemir's (2019) choice of algorithm did not allow for feature importance 
demonstration.  The prediction results of ANNs are less explainable compared to other 

algorithms that indicate feature importance.  However, the conventional multiple 
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regression (which is a more interpretable algorithm) was not successful compared to 

the ANNs, based on R-square and mean percentage errors as performance criteria. 

Classification of Accident Causes and Information Retrieval 

ML algorithms 
Zhang et al., (2019) used single and ensemble classification algorithms for the 

classification of 11 accident causes; the causes were extracted from accident reports 
by a natural language processing (NLP) algorithm.  In addition, the objects mentioned 

in the passages of reported text were also extracted.  However, it was found that the 
performance of the NLP was not satisfactory (Zhang et al., 2019).  Another approach 

was to classify accident causes in combination with relevance to accident severity 
(Zhong et al., 2020, Kim and Chi 2019).  Kim and Chi (2019) exhibited a prototype 

for extracting the cause of an accident (hazard object), location (hazard position), 
when the accident occurred (work process) and the result (accident result).  They also 

identified the semantic roles and rules for the accident components in relation to the 
accident result and used the conditional random field (CRF) classification algorithm 

(Kim and Chi 2019).  Kim and Chi (2019) exemplified their prototype by using a 
tower crane fall query.  The information retrieval prototype was represented in terms 

of a statistical analysis of extracted information from the accident textual reports.  
Accident categories have also been analysed based on their causes and merged with 

weather related data and classified into four accident categories (Falls from height, 

Collision by objects, Rollover, Falling objects), (Kang and Ryu 2019). 

Table 1: Summary of ML models, data source, algorithms, and purpose 

 
1 Logistic regression (LR), Naïve Bayesian (NB), k-nearest neighbour (KNN), multilayer 
perceptron (MLP), Adaptive Boosting (AdaBoost) 

Factors and feature ranking 
The combination of a Convolutional Neural Network (CNN) and data mining 
provided deeper insights (see Table 1).  Latent Dirichlet Allocation (LDA) and Word 
Co-occurrence Networks (WCN) data mining methods were used to identify 

correlations between retrieved causal variables and to visualize the information 
(Zhong et al., 2020).  The data mining methods provided the organization of the 

results as a main topic (ex.  collapse of an object) and the corresponding actions (ex.  
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Collapse of object, Falls Work, Protect) and objects (ex.  Subway, Construction, 

Fracture, Equipment, Scaffold, Crane).  Furthermore, the WCN method showed 
insights into accidents and severity, for example scaffolding accidents are infrequent 

but tend to be sever and likely to result in a fatality (Zhong et al., 2020). 

The application of RF also revealed correlations thanks to the feature ranking 

possibilities (Kang and Ryu 2019).  The assailing materials, original-cause materials, 
unsafe behaviours, protective equipment, unsafe states, work contents, and diagnosis 

names were ranked highest on the scale of feature importance, whereas weather 
related variables were not found influential in the classification of accident types.  

Kang and Ryu (2019) further examined feature importance for every accident type.  
For example, work activities before falling were installation or maintenance of 

mechanical equipment and facilities but most fall accidents were caused by workers 

not wearing safety protective equipment. 

ANALYSIS 
This research aimed at investigating the role of ACMs in the application of ML in the 
field of reported construction occupational accidents.  At the same time, identify the 

relevant gained learnings from ML in relation to ACMs.  The BOW-Tie model (see 
Fig 3) is useful in the analysis of threats, hazards, consequences, the top event and the 

prevention barrier.  By comparing the BOW-tie typology to the ML model 
components, it can be observed that according to Shrestha et al.'s (2020) 

categorization, upstream precursors can be relative to threats while energy type to 
hazards, severity to the consequences and type of accident to the top event.  Similarly, 

some components of the BOW-Tie model can be found in Zhang et al., (2019) and 
Kang and Ryu (2019).  Accident type can be categorized as a threat or a hazard.  

Zhong et al., (2020) and Kim and Chi (2019) presented a linkage between accident 
types and the accident consequences.  Furthermore, the application of data mining 

resulted in finding and visualising the relationships between causal variables (Zhong 
et al., 2020).  The main topic in Zhong et al.'s (2020) analysis can be considered like 

the typology of threats in the BOW-Tie model and the corresponding actions to the 
top event, and the objects (such as the scaffolding) like hazards.  The latter features 

were linked to the consequences which is one step closer to the exhibited 
representation of the link between threats and consequences in the BOW-Tie model.  

Kim and Chi (2019) illustrated a more explicit setup for accidents’ features, thanks to 
the semantic roles and rules of accident components.  Simultaneously, it can be found 

that some factors and functions in the ML model are different from the structure of 
components and relationships within the BOW-Tie model.  Zhu et al., (2021) for 

example identified causes into categories related to the organization, safety training 
and contract management while the BOW-Tie model encompasses the immediate 

threats.  Although the ML representation of causes and their relationships can identify 
a link to between the hazard and the consequence (Shrestha et al., 2020, Zhu et al., 
2021, Choi et al., 2020, Zhong et al., 2020, Kang and Ryu 2019), which is similar to 
the structure of the BOW-Tie model.  But a major difference can be found in the 

ranking of features importance that can only be found in the ML representation. 

The SCM explains accidents by the concept of barrier failure that exists in multiple 

levels of the organization and influences human error down the chain.  The SCM 
shows to be comprised of higher levels of causation compared to the ML illustrations 

of accident causes.  The factors related to machinery, workspace, energy sources and 
weather (Shrestha et al., 2020, Zhong et al., 2020, Zhang et al., 2019, Kim and Chi 
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2019, Kang and Ryu 2019) all exist within the first layer of the SCM (see Fig 1).  

Attributes of human factors, risky behaviour, occupation (Kang and Ryu, 2019, Choi 
et al., 2020, Ayhan and Tokdemir 2019) can be categorized into the second layer of 

the SCM.  Only one effort in the reviewed literature (Zhu et al., 2021) has used 
variables related to the upper levels of the SCM.  The contract management variable 

(Zhu et al., 2021) belongs to the top-level decision-making layer.  However, the 
results feature ranking showed that the type of accident, Accident reporting and 

handling, Training and examination, and Safety culture are the most influential factor 
in accident severity predictability.  In terms of the mechanism in which accidents 

occur in the SCM logic, failure should happen on all the levels at once.  The presented 
ML literature attempts to couple the accident-related features with the severity in 

some type of a direct relationship (Shrestha et al., 2020, Zhu et al., 2021, Choi et al., 
2020).  However, the nature of this relationship remains ambiguous.  The RF 

algorithm showed the biggest potential in understanding relationships between ranked 
features, but this will need visualization of the ML model structure and the features 

that result from using the algorithm.  Moreover, the use of data mining methods 
(Zhong et al., 2020) seems promising in visualizing relationships between causal 

variables, but the factors used in Zhong et al., (2020) only cover the bottom level of 

causation, which does not reveal much about the SCM. 

There are two major differences between the analysed ML literature and the SCM and 
the BOW-Tie.  Both ACMs have defence barrier activation as a requirement for 

prevention.  Secondly, a common feature in ACMs is that they do not differentiate the 
consequence of accident severity, but only focus on the occurrence of an accident.  It 

is evident that all ML models do not consider neither the prevention barrier nor the 
barrier failure.  Shortcomings in identifying prevention is not necessarily originating 

from ML but it could have been noticed if ACMs were used as a framework of the 
data analysis.  It has been acknowledged that accident investigations might skip the 

preventive recommendations (Hopkins 2014).  Suggesting measures that are further 
from the accident’s technical circumstances becomes subjective and lacks concrete 

evidence - although Hopkins (2014) suggested recommendations can be reasonably 
made, even in the absence of evidence going beyond the particular case.  This seems 

problematic because the consistency of the single report is then maybe compromised. 

ACMs assume and promote severity as a stochastic element and impossible to be 

predicted.  On the contrary to the reporting schemes that allow for reporting for the 
level of severity.  Industrial reports sometimes encourage to report lost days which can 

have an impact on what the company reports.  This tendency to focus on severity is 
reflected in the ML examples reviewed in this article (Shrestha et al., 2020, Zhu et al., 
2021, Choi et al., 2020, Ayhan and Tokdemir 2019).  Although the ML literature 
claims success in predictions but the internal validity of 63% and 70% seems arbitrary 

and needs further proof of prediction success.  Therefore, what should be focused on 
in the ML application is to find alternatives to severity classifications such as the 

modelling of risks, learning more about the prevention process, and most importantly, 

to prevent the accident from happening foremost by adopting the paradigms of ACMs. 

ACMs had been constantly reviewed and more causation layers were introduced.  
More remote levels of causes which are further from the accident environment (e.g., 

regulations and governmental causes such in the STAMP model (see Fig 2)).  The 
STAMP model is designed into feedback loops and constrains.  Although Zhu et al., 
(2021) featured higher levels of causation but the levels of causation of the STAMP 
model extend back to governmental and regulatory levels.  In the construction 
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industry, the STAMP model had not been detected (Woolley et al., 2019).  This might 

be due to that system thinking was not used in accident investigations and causation 
analysis.  Furthermore, system models are diverse and lack the conceptual unity that 

would allow their use in qualitative accident predictions (Grant et al., 2018).  The 
causes of accidents in the STAMP model are procedural and they seem applicable 

since the model component are identifiable functions in almost every work situation.  
But the latter miss the definitions of simple measurement and a benchmark of 

comparison, especially for the personnel doing accident investigation. 

CONCLUSIONS 
By the review of ML and ACMs in relation to each other, it can be found that ML 

analysis of accident reports can learn from the components of ACMs to identify 
prevention measures.  For further impact and concrete use cases, ML development 

needs to be guided by ACMs.  Most importantly, the prevention component which is 
represented in the BOW-Tie and SCM models would have been detected if ACMs 

were used as a framework.  The ML results appear to be more of a descriptive nature 
and especially useful in the classification of accident type and severity as well as 

information retrieval.  However, a valuable contribution is found in defining the 
relationships between hazards, accident types and severity.  Future ML analysis is 

suggested to be more focused towards the mapping of risks rather than classification 
of accident types and severity.  The adaptation of ACMs such the BOW-Tie model 

could aid ML models to be developed further from severity and more towards the 
identification of risk and heir corresponding prevention barriers.  Moreover, ACMs 

can be improved by the ranking of features and visualisation properties offered by 
data mining and the more explainable ML algorithms such as the RF.  This conclusion 

would also mean that it is better deemed suitable to use more explainable ML 
algorithms rather than variations of ANNs.  Knowledge about the importance of 

causation levels in ACMs would probably fill the gap of reporting distant factors.  The 
more is known about the relationship of further factors from the construction site, the 

more these factors will be detectable by reporting personnel.  The analysis points to a 
very important gap in the practice of the reporting of prevention measures, because 

unless the reporting include suggestions for how an accident can be prevented, less 

can be learnt from past experiences. 

The paper is limited by the types of ACMs which were analysed.  ACMs are within a 
developed field and different models could be analysed in a similar manner.  The ML 

models are analysed in terms of algorithms, factors, and feature ranking only.  Future 
research can highlight an in-depth analysis of the structure of algorithms to be 

compared with ACMs structure. 
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